

Teaching Old Turtles New Tricks:
Artificial Life Simulation Using Lingo

 Andrew M. Phelps

Information Technology Dept.
College of Computing and Information Sciences

Rochester Institute of Technology
Rochester, NY, 14623
http://andysgi.rit.edu/

 Daniel R. Kunkle
Information Technology Dept.

College of Computing and Information Sciences
Rochester Institute of Technology

Rochester, NY, 14623
http://www.rit.edu/~drk46633/

Abstract
The new and expanding interdisciplinary field of
artificial life (Alife) is not yet well defined and
will mean various things to different people.
Alife.org [2000] states broadly “The term
Artificial Life is used to describe research into
human-made systems that possess some of the
essential properties of life.“ This article details
the simulation of one such life-like system
implemented using Macromedia Director.
Though many of the ideas and techniques
relating to alife that are explored in this project
have been studied for many years, this project
breaks new ground as it uses Director to allow
the user to easily visualize the life-like processes
occuring within the simulation.
Speciffically, this project aims to explore the
visiualisation of two components of complex,
life-like systems: decision making and evolution.
This article contains four main sections, the first
describing the simulation interface and it’s
components, the second detailing the underlying
representation of individual life forms and their
environment, the third exploring the mechanism
for decison making along with other life like
features and the last concerned with the use of a
genetic algorithim for the evolution of artificial
life. Additionally, possible future explorations
for the project are proposed.

1 THE SIMULATION ENVIRONMENT

1.1 TUTORIAL FILE SETUP
This project was developed through a seminar in artifical
life involving faculty and students of the Department of
Information Technology at the Rochester Institute of
Technology. It’s main goal is an intorduction to the
simulation of life-like functions in an artificial
environment.

To get started, open the demo (alife.dir) that accompanies
this article. Starting the movie will create a number of
artificial life forms and start the simulation. This group of
life forms is the first generation. They will begin
performing actions based on their genetic code. These
actions may involve changing their movement speed and
direction based on a number of percieved environmental
conditions and consuming food to survive.

Figure 1: View of simulation, running with default parameters
and variable setup.

1.2 VISUALIZATION OF LIFE
The moving, blue forms represent the living individuals.
They are sometimes refered to as “Turtles“ because of
their Logo based heritage. The plane of green and black
squares represents the land that the individuals move on.
These squares are termed “patches“. This term come
from StarLOGO [MIT, 2001], the simulation tool on
which this project’s environment is based. The more
green a patch has the more food it contains. A turtle will
eat when it is on a patch that contains food. Eating is the
only way a turtle can increase it’s energy level. A turtle is
constantly using energy to maintain the functions of life
and will spend energy faster when it moves more quickly.

So, a turtle must spend energy to move to find food to get
more energy, just like real life. If a turtle is unable to find
enough food it’s energy level will reach zero and it will
die. When a turtle dies it becomes red and is placed in the
“graveyard“ at the back of the environment.
After a certain amount of time the simulation halts and
reproduction takes place. The population replenishes
itself with a new generation of turtles and the simulation
restarts. The generation number and the time left until the
next generation will be generated are displayed in the
upper left along with statiscs detailing how well the last
generation fared, including the number of individuals that
survived the last generation (out of 72) and the average
age of all of the individuals at the end of the last
generation (a maximum of 350 if all individuals survive
to the end).
This simulation is set to start with no auto-matic
rebounding behaviour to keep the turtles on the board. In
fact, you may notice a substantial number of them flying
off in all directions in the first few stages of exolution.
Over time however (10-20 generations) you should notice
that many of the turtles develop their own rebounding
behaviour (as well as a number of other behaviours
which this paper will describe). Such was our intent – to
allow an object to develop behaviour without explicitly
programming than model into the object. Turtles rebound
because by doing so they can continue to get food, and
live longer, both of which are goals of the overall
ecology.
The controls in the upper right change the users view of
the world. Allowing them to move and zoom their view
relative to the scene. Experiment by watching turtles
close up to note their individual difference, and by
zooming out to note the trends in the entire population.

2 SIMULATION ENGINE

2.1 PATCHES AND TURTLES
The entire basis of this simulation revolves around two
very important concepts, the “turtle” and the “patch”.
The “turtle” traces its heritage back to the M.I.T. “Turtle
Graphics” work, which was first presented by Abelson
and diSessa [Ableson & diSessa, 1980]. Also of interest
are the similarities of this work to the “vehichles”
presented by Braitenberg [1984, 1996]. A “turtle” has
the following characteristics: it can perform a limited
number of self-contained action, and in the original
implementation, these were geometrical. Examples of
simple actions were things like ‘move()’ which would
move a turtle along its forward vector the number of units
specified by its speed. Additionally it could turn right or
left, set its speed to a different value, and (by combining
these actions) rebound itself from collisions. The turtle
can be thought of in programming terms as the collection
of a local coordinate system within an object, with the
methods of that object providing manipulation of that
coordinate axis. Additionally, turtles usually had the

ability to represent themselves, as some element that is
drawn to the screen, in our implementation we have given
the turtle a sprite property, and it uses that sprite to
represent each turtle, or instance of the object (see figure
2).

Figure 2: A few instances of the turtle object visualized as blue
‘mushrooms’ on the ground.

The second important notion then, once a world is filled
with turtles, is the environment that the turtle is living in,
and in this simulation we borrow heavily from the notion
of a “patch” used in the StarLOGO environment [MIT,
2000]. A patch is a plot of ground that stores within itself
certain attributes, and again we implement this structure
as a Lingo object. Thus a patch is really a container for
variables that describe the environment at that particular
geometric space. In more complex environments the
patches can be though of as three-dimensional bins rather
than two dimensional planes, a turtle in our world could
feed off a patch regardless of how high in the air it was
floating, we only check the X and Z coordinates (Y axis is
vertical up / down).
The interesting thing to note about this system is that, like
its predecessors, the turtle can only know about its current
patch and the neighboring patches by comparison (for
example, it may be able to deduce ‘the patch to my
immediate North has more food than my current patch).
They do not receive a ‘global view’ of the world any
more than we as individuals do. Indeed just has hard-
coding behavior is relatively simple, so to is it trivial to
simply give the turtle complete knowledge of everything
and anything to do with its environment, and then expect
the evolution of complex behavior. If a turtle knows
everything, it will simply hop from its current square to
whichever square has the most food that it can travel to,
and it will know if it can make it because of its god-like
knowledge. Such a system was uninteresting to the
authors, as it did not allow for multiple strategies to
emerge and be incorporated into the general solution.

2.2 3D VIEWING OF A 2D WORLD
This world of patches and turtles then, could be presented
from a top-down point of view, similar in some sense to
the StarLOGO environment [MIT 2001]. Instead, the
decision was made to leverage an existing Director
project, the LingoLand 3D Engine [Phelps 2001]. This
engine, while not wholly optimized for real-time
performance, ran well enough to offer a perspective view
of the simulation environment. The environment is made

up of patches, which in turn are represented by the quads
drawn by the engine. These tiles are expanded from the
previous work of the terrain simulation to include
information about the amount of food and other
information necessary for the turtle / tile interaction
within the tile data structure.
The 3D engine at the heart of this environment operates
on a few simple principles, and by using a number of
methods that are listed here (see Table 1), and which are
described more fully in the paper describing LingoLand
[Phelps 2001]. First, we have linked the control of the
engine’s camera to the buttons on the upper right of the
screen, allowing the user to manipulate the scene. This
manipulates the gCamera’s properties for its X and Y and
Z position vector, though its associated move and roll
methods. This camera is used in the projection of the tiles
upon the stage, causing the scene to appear in relative
perspective. Perhaps the most useful feature of the camera
is its ability to ‘zoom in’ on the board, offering a closer
view of turtle behavior during the simulation.

Table 1: Engine Control Variables (partially reprinted from
LingoLand: Simple 3D Terrain Simulation in Lingo for ease of
reference).

VARIABLE DESCRIPTION

max_row

max_column

The size of the original land matrix.
This is the number of ‘points’ in X and
Z that you see the original land created
with when the movie starts.

square_size Size in pixels of the original tiles, the
space between the points defined
above.

gCamera The viewpoint for the scene, see
section 1.1 and 1.2 for details.

gZoom Original zoom level used by the
projection matrix relative to the
camera.

Removed from the original engine is support for dynamic
lighting, as this did nothing to augment the simulation,
and in fact made it more difficult to read the color-coding
scheme that describes the desirability of the patch. Also
removed from this demo is the code that randomly
assigned an elevation to the ground, producing the
original output of the terrain simulation (see Figure 2).
The removal of these features was simply for the ease of
student use and the requirement to complete the
simulation within an academic quarter. Nathaniel Swart
(Nathaniel_M_Swart@firstclass.it.rit.edu) led a student
team that did use elevation within the simulation, using
elevation as a criterion for food growth and as a criterion
that helped determine the ease with which the turtles
could move from patch to patch.

Figure 2: Original Terrain Simulation Engine. Lighting and
Elevation were removed for the A-Life Simulation Demo.

2.3 MOVING AND TARGETING
The movement of turtles is somewhat complex, and is
described in its most basic sense by Kurtz in his original
2D implementation [Kurtz, forthcoming]. The basics of
the transformation of that engine to the engine contained
in this project are presented by Phelps in LingoLand
[Phelps, 2001]. A turtle contains a series of methods that
allow it to target a number of different types of locations
within the world, and a simple move method that moves a
turtle along its pFwd vector. The movement and targeting
methods are summarized in Table 2, and are commented
in the Lingo Code.

Table 2: Turtle Movement and Targeting Methods. See the
VBLF script for implementation comments.

METHOD DESCRIPTION

new Create a VBLF.

print Print the location vector of a VBLF

RollLeft Roll counter-clockwise along the
pForward vector, X-Axis upon
creation.

RollRight Roll clockwise along the pForward
vector, X-Axis upon creation.

PitchUp Roll counter-clockwise along the pLeft
vector, Z-Axis upon creation.

PitchDown Roll clockwise along the pLeft vector,
Z-Axis upon creation.

YawLeft Roll counter-clockwise along the pUp
vector, Y-Axis upon creation.

YawRight Roll clockwise along the pUp vector,
Y-Axis upon creation.

Table 2: (continued)
VARIABLE DESCRIPTION

Move Move a VBLF along its forward vector
a unit equal to its speed property.

MoveTo Reposition a VBLF to an absolute
coordinate value.

VBLF_Project Reset the h and v properties of a VBLF
so that it draws on the 2D stage
correctly.

HeadForVect Orientes the sprite to head for the
specified position vector.

HeadForPt Head for the specified 3-D point (x,y,z)

HeadForVBLF Head towards a the position of a
second VBLF

X, Y, Z Returns the x, y, or z coordinate of the
turtle.

TurnTo Turn to an absolute heading in degrees.
Currently only implemented for the XZ
plane.

Distance Returns a position vector between the
vblf and a target position.

DSquare Same as distance but does not use sqrt
in calculation. Distances are relative
not scaled to the coordinate space.

3 MAKING IT LIFE-LIKE

3.1 OVERVIEW OF ARTIFICIAL LIFE
Artificial life, most broadly, is life created by human
effort rather than natural occurrence. This covers a
massive range of study and must be narrowed in this case
to the aspects of artificial life that this project addresses.
Resources for artificial life in general can be found in the
annotated bibliography.
In our case, artificial life is the simulation of life using
computational methods. This can have two obvious uses:
simulating existing biological systems to gain a better
understanding of them and simulating new systems that
have no natural analog. The first use is becoming more
and more widespread and there are a number of tools
available that allow this kind of explanatory simulation,
including StarLogo developed at the Media Laboratory,
MIT. StarLogo is also used as an educational tool to
teach students about the modeling of decentralized
systems [MIT, 2001].
Our simulation has no natural analog. It is not meant to
shed light on some existing system, but rather to create a
novel environment that has some of the features of a
natural system. This approach is becoming increasingly
popular in computer gaming where the possibility of a

game that conforms to its players and evolves over time is
particularly appealing.
This project simulates two main features of living things,
a decision making process to choose possible actions
based on current conditions, and evolution to adapt to an
environment. The implementation of these features is
covered in the following sections.

3.2 DECISION MAKING PROCEDURE
Decision making is a trademark of life, and a complex
one at that. What a given life form does at any moment is
based on a great number of things, and these things can be
separated into two categories: internal and external. The
state of the individual and the state of the environment as
they perceive it determines what they will do next. This
procedure is modeled in the simulation in a simplified
form.
Becuase the traditional turtle from logo can do little else
than take movement instructions, these upgraded
individuals are refered to as Decicision Making Turtles
(DMTs), and are the creatures you will find roaming the
simulation.
At any given moment the DMT will find itself in one, and
only one condition. This condition is based on properties
of both the DMT itself and it's immediate surroundings.
In the basic simulation there are only two properties, one
internal and one external: (1) The DMT’s energy level,
and (2) whether or not the patch the DMT is currently on
has food or not.
These properties are defined as binary digits, each having
only two possible values. For the first, the DMT either
has high or low energy (high and low being defined at the
start of the simulation). The second, food is present or
not present. This leads to four possible conditions, (1)
low energy/no food, (2) low energy/food present, (3) high
energy/no food and (4) high energy/food present.
Replaced by binary digits these conditions are 00, 01, 10
and 11 (or 0, 1, 2 and 3 in decimal). So, a DMT always
finds itself in one of those four conditions. This covers
one half of the decision making process, a DMT must
now decide what actions to perform for the given
condition.
Along with the list of conditions, a list of actions that a
DMT has available to it is specified. In this simulation
that list includes thefollowing:
(1) nothing - DMT performs no action
(2) speed up - DMT speeds up one speed unit
(3) slow down - DMT slows down one speed unit
(4) stop - DMT sets speed to zero
(5) head for food - DMT heads for the neighboring patch
with the most food. Each patch has 8 neighboring patches.
If the patch that the DMT is on has more food than any of
those 8 the DMT does nothing.
(6) turn around - DMT turns 180 degrees

(7) turn random amount - DMT turns a random amount,
from 1to 360 degrees.
(8) head for neighboring turtles - DMT heads for a the
neighboring patch with the most DMTs on it. If the patch
that the DMT is currently on has more turtles than any of
the surrounding 8 patches the DMT will do nothing.
(9) head away from neighboring turtles - DMT heads
directly away from the neighboring patch with the most
DMTs on it. If the patch that the DMT is currently on has
more turtles than any of the surrounding 8 patches the
DMT will do nothing.
Notice that "move" is not an action. This is because each
DMT will move each frame. If the DMT’s speed is zero
then moving will not change that DMT’s location.
The only thing left is to connect the conditions to the
actions. Each DMT is given a "genome", which is a list
that specifies the actions to be performed in each
condition. In this simulation, a DMT can perform up to 2
actions in any given condition. At the beginning, each
DMT’s genome is randomly generated, having either 1 or
2 random actions per condition.
An example random genome: [3,4] [7,3] [5] [4]
The first set of []'s corresponds to the first condition listed
above, low energy/no food. So, when a DMT has low
energy and is not on a patch with food it will first slow
down one speed unit, then stop. It is possible for actions
to cancel each other out when performed in the same
condition, such as speed up and slow down.
These conditions and actions could easily be modified and
augmented to provide the DMTs with goals and
considerations other than simply finding food to stay
alive. In one version of this simulation there were a
number of red patches scattered around that were
designated as “goals“ that DMTs would consider in their
decision making process.
A DMT’s genome will not change during their lifetime,
so DMTs with a poor genome will die earlier than those
with a more advantageous genome. The population of
DMTs, however, can improve through evolution.

3.3 EVOLUTION
The accepted method of evolution in nature is through
natural selection, as formulated most famously by Charles
Darwin. The theory of natural selection is based on a few
assumptions and ovservations: (1) The environment
provides limited resources that individuals must compete
for (2) Individuals have differences (3) Individuals can
pass on their differences to offspring. This leads to the
inference that some individuals, because of their
differences, will be more able to acquire those limited
resources and therefor survive more easily and reproduce
more easily. These offspring in turn will acquire some
traits from their parents that will allow them to survive
more easily, and so on. Over time, evolution.

This is just the senario that has been created in this
simulation. The environment has limited food resources.
Individuals differ through their mapping of conditions to
actions. And, through their genome, better performing
individuals can pass their traits onto their offspring.

3.4 COMPLEX BEHAVIOUR FROM SIMPLE
BRAINS

The use of evolution in this simulation resulted in
emergen behaviors. Emergent behaviors are complex
ones that result from the interation of some simpler
actions.
In this case, we programmed the DMTs with a small set
of simple actions, but didn’t explcitly define how they are
to be used. The optimum use of these actions was
determined by the DMTs evolution in their environment.
One fairly important emergent behavior, as far as survival
is concerned, is grazing. In the first generation, the
DMTs often run wildly, wasting energy, or stand still,
failing to find food sources. In later generations many of
them seem to graze the environment, moving to patches
that have large amounts of food and moving on once
those patches are delpleted. This behavior was in no way
defined in the simulation but yet appears consistantly with
several runs.
Another emergent behavior observed was rebouding, or
turning around upon reaching the edge of the patches.
This behavior was explicitly programmed into the system,
as it is in any simulation where characters can move about
in a finite area. In this case though the rebouding doesn’t
always work. DMTs, if they are stuborn enough, can
continue to move off the edge of the patches. The
rebounding programmed into the simulation could most
likely have been improved to insure no DMT could go off
the board, but evolution provided for it after a number of
generations. This is because DMTs that leave the board
have no way of obtaining food and so usually die-off
sooner. Through evolution these individuals reproduce
less often and DMTs stay within the area of the patches
more regularly. This was tested by removing the built in
rebouding and observing the results. To experiment with
this yourself, make sure that the global variable
gReboundingOn in StartMovie is set to false, and
let the program cycle through 10-15 generations. You
should see a marked decrease in the number of turtles that
fly off the board over time.

4 GENETIC ALGORITHM

4.1 GENOME REPRESENTATIONS
The first step in implementing a genetic algorithm (GA) is
representing the thing you want to improve with a
genome of some sort. In this case, since it is the decision-
making effectiveness of the individuals that we want to
improve, the genome used in the genetic algorithm is the

same as that used for decision-making. That is, a list of
actions for each condition.

4.2 GENETIC ALGORITHM PROCEDURES
The procedures described here are based on Goldberg’s
explanation in his first chapter an “Introduction to Genetic
Algorithms“ [Goldberg 1989]. Much work has been done
on GAs in the last few decades along with a number of
good introductions for those new to the subject.
A genetic algorithm selects those DMTs that have
performed better (i.e. ones that have lived longer) and
mates them, producing a new generation of DMTs. This
new population is produced by halting the simulation
momentarily and performing the following steps:
(1) Calculate each DMT's fitness - DMTs that have
lived longer by feeding more will have a higher fitness.
In more complex simulations fitness would be based on a
number of criteria.
(2) Create a mating pool - This mating pool is half the
size of the original population. Each member of the
mating pool is selected randomly from the current
population, with DMTs that have a higher fitness being
more likely to be selected.
(3) Reproduction through crossover - Each member of
the mating pool is mated with one other, so that each
DMT that made it to the mating pool reproduces with one
and only one other DMT from the mating pool. Their
decision making genome are split at a random point,
crossed over, and produce two offspring (see Figure 3).

Parent1 = [1,2] [6] [9,4] [5]
Parent2 = [4,4] [3] [7,2] [9,8]
random crossover point = 3 (between third and fourth
conditions)
offspring1 = [1,2] [6] [9,4] [9,8]
offspring2 = [4,4] [3] [7,2] [5]
Both parents and both offspring are then placed into the
next population.

Figure 3: a simple example of cross over.

(4) Mutation - each child has a small random chance that
it's genome will be slightly altered through mutation. This
helps to encourage diversity in the population, hopefully
leading to better genome that might not otherwise have
been discovered. It is the only way in this simulation to
achieve new combinations of actions within a condition,
as crossover only acts on combinations of sets of actions.
(5) Restart the simulation and repeat steps 1 - 4 at set
intervals(about one generation every 1 minute, depending
on the speed ofyour machine).

After a number of generations, the DMTs will begin to
find food better and live longer.
To track the evolution of the DMTs, the observer can
watch the statistics in the upper left of the screen. The
basic simulation will give two statistics: (1) the number of
turtles left alive at the end of the generation and (2) the
average age of the population. Both of these will increase
as new generations are created.

5 CONCLUSIONS
This project met a number of its original goals. The
simulation contains life-like features, namely non-
deterministic decision-making and evolution. Equally
important was the fact that these features were easily
observed and understood by those with no acquaintance
with the underlying subject matter.
From a developer’s perspective, one of the most
satisfying things was having the simulation develop
unexpected, emergent behaviors and having these
behaviors be positive ones. This is opposed to most
unexpected behaviors in other applications, which are
almost always bugs needing to be fixed. Often, the more
life-like something is the more it can adapt and grow
without explicit instruction and intervention.
The educational benefits of teaching the Artificial Life
class using Director were exceptional: Director offered a
platform that was completely open, and had the necessary
capabilities for this rudimentary model, while still
offering students a familiar background against which to
work. Most often courses in artificial life are first taught
in Lisp, or sometimes in C / C++. This is usually done to
accommodate the eventual need for recursive strategies,
or, in some cases, code modification on the fly. However,
with the advent of more modern languages, these
languages are now typically not taught as part of the
normal student sequence, with R.I.T. and many other
institutions moving to Java. Director, however, manages
to provide almost all the necessary functionality, without
encapsulating the routines themselves such that students
don’t feel ‘programmatically uninvolved’, which was
some students’ reaction to the StarLOGO environment.
Second, the course was offered as a seminar, which was a
structure that fit part and parcel with the idea of Artificial
Life. Each member of the class brought something unique
to their way of thinking about the research, and without a
set syllabus, it was possible to capitalize on many of the
directions that students wanted to follow. Much of the
direction of the course was set by my co-author Dan
Kunkle, who at a very early stage in the course began to
think of the Turtles as having actions described by
genomes. There are certainly other ways of implementing
a genetic algorithm, but he was the most precise in his
presentation of a possible direction, and the rest of the
class followed this direction behind him.
The final student experience for that course was positive,
although the course received mixed reviews [R.I.T. 1999].

Based on personal observation it would appear that the
students who more fully explored the research of
Artificial Life as a field felt extremely satisfied with the
course and the final implementations, while those that
were looking for a more traditionally structured course
felt less satisfied, although the course evaluation metrics
available at R.I.T. are incapable of either supporting or
disproving this hypothesis. We note this for the sake of
other educators who may wish to use the material to
found an introductory course to Artificial Life for a
similar class of students: the incorporation of genetic
algorithms and the evolutionary approach will take time
for students to grasp, some of whom will become
exceedingly frustrated when they feel they could just
hard-wire the desired behavior with greater ease. This
project will likely be presented more formally from a
pedagogical point of view in the future, but for this paper,
which is technically oriented, it should be noted the
response that these projects received.
If you are considering using this material for classroom
dissemination, please contact the author(s) for additional
files, materials, notes etc.

6 FUTURE WORK
Needless to say this engine could be developed further,
and the underlying structure has almost limitless
possibilities in allowing sprites to develop unforeseen or
optimized behavior, as ours developed a simple
rebounding structure. This is optimal for larger solutions
in which the optimal behavior for a sprite is unknown, or
for situations in which it is desirable for the sprite to
demonstrate some appearance of intelligence, computer
games offering one of the more exciting possibilities. The
authors hope to expand and extend the work presented
here, possibly producing milestones and additional
algorithmic implementations along the way.
Acknowledgments
The authors would like to thank Steve Kurtz for his
participation in developing and teaching the course, as
well as Bruce Damer and all the rest who started the
Digital Biota Working Group, and Karl Sims, who
inspired us all. Additionally, this project could not have
been successful without the student body of the
Information Technology Department at the Rochester
Institute of Technology. Thanks to everyone who took
the chance and signed up for the course.

References
Abelson, Harold and Andrea diSessa. (1980) Turtle
Geometry: The Computer as a Medium for Exploring
Mathematics. Cambridge, Massacheusetes: The MIT
Press.
A. Liekens (2000): "Artificial Life?", in: A. Liekens
(editor): Artificial Life Online 2.0, URL:
http://www.alife.org/index.php?page=alife&context=alife.

Braitenberg, Valentino. (1986, 1995). Vehichles:
Experiments in Synthetic Psychology. Cambridge,
Massacheusetes: The MIT Press.
MIT Epistomology Group, Media Lab, Massechusets
Institute of Technology. Introduction to StarLogo.
(2001) Online: http://el.www.media.mit.edu/groups/el/
Projects/starlogo/index.html.
Steven Kurtz and Andrew M Phelps. Vector Based Life
Forms, a 3D Engine Bawsed on Turtles. Forthcoming.
Featured Article in Using Director – Director Online.
Online: http://www.director-online.com/
Goldberg, David E. (1989) Genetic Algorithms in Search,
Optimization and Machine Learning. Reading,
Massechusetts: Addison-Wesley.
Steven Kurtz. Turtle World. (Forthcoming) Featured
Article in Using Director – Director Online. Online:
http://www.director-online.com/
Phelps, Andrew M. LingoLand: Simple 3D Terrain
Simulation in LIngo. (April 2001). Featured Article in
Using Director – Director Online. Online:
http://www.director-online.com/
Annotated Bibliography
[GA]Genetic Algorithm; [L] Lingo based 3D Code; [M]
Mathematics; [AL] Artificial Life; [G] Graphical
Representation.

1. Edgerton, P.A & W.S. Hall. (1999) Computer
Graphics: Mathematical First Steps Essex,
England: Prentice Hall. [M]

2. Lithium. (1999-2001) Three Dimensional
Rotations. Online. http://www.gamedev.net/ [M]

3. Rodgers, David F. (1985) Procedural Elements
for Computer Graphics. New York, New York:
McGraw Hill. [M][G]

4. Tamahori, Che. (1999) How to Cook 3D in
Director. Online. http://www.sfx.co.nz/ tamahori
/thought/ shock_3d_howto.html. [L][M][G]

5. Watt, Alan and Fabio Policarpo. (2001) 3D
Games: Real Time Rendering and Software
Technology. New York, New York: Addison-
Wesley ACM Press. [M][GA]

6. Zavatone, Alex. Inside Zavs Brain: 3D Director.
Online. www.director-online.com/accessArticle.
cfm ?id=286. [L]

7. Swan, Barry. (2000) T3D Engine. Online.
http://www.theburrow.co.uk/t3dtesters/. [L][G]

8. Langton, Christopher G. (1995, 1997) Artificial
Life: An Overview. Cambridge, Massacheusetes:
The MIT Press. [AL][GA][G]

9. Langton, Christopher G., Richard K. Belew,
Hiroaki Kitano, and Charles E. Taylor. (1998)
Artificial Life VI: Proceedings on the Sixth
International Conference on Artificial Life.

Boston Massacheusetes: The MIT Press.
[GA][AL][M]

10. Langton, Christopher G. and Katsunori
Shimohara. Artificial Life V: Proceedings of the
Fifth International Conference on the Synthesis
and Simulation of Living Systems. Boston
Massacheusetes: The MIT Press. [GA][AL][M]

11. Heudin, Jean-Claude. (1998) Virtual Worlds:
Synthetic Universes, Digital Life, and
Complexity. New England Complex Systems
Institute Series on Complexity. Reading,
Massacheusetes: Perseus Books. [AL][M]

12. Koza, John R. (1992, 1998) Genetic
Programming: On the Programming of
Computers by Means of Natural Selection.
Cambridge, Massacheusetes: The MIT
Press.[GA][M]

13. Koza, John R., Forest H. Bennett III, David
Andre, and Martin A. Keane. (1999) Genetic
Programming III: Darwinian Invention and
Problem Solving. San Francisco, California:
Morgan Kaufmann Publishers. [GA][AL][M]

14. Funge, David John. (1999) AI for Games and
Animation: A Cognitive Modeling Approach.
Natick, Massacheusetes, A. K. Peters.
[GA][AL][G]

15. LaMothe, Andre. (1999) Tricks of the Windows
Game Programming Gurus. Indianapolis,
Indiana: Sams. [GA][M][G]

16. James D. Foley, Andries van Dam, Steven K.
Feiner, John F. Hughes. (1987, 1996 2nd revised
printing).Computer Graphics Principles and
Practice – 2nd Edition in C. The Systems
Programming Series. Washington, DC: Spartan
Books [M][G]

Appendix A: Vocabulary
Patch – A bin of space that stores information about itself
and can reference the patches it is adjacent to in the
coordinate space. This idea is based upon the work of
Michael Resnick and the MIT Epistemology & Learning
Group’s STARLOGO project.
Environment – A collection of connected patches.
Individual or “TURTLE” - An autonomous creature. A
turtle contains both a local coordinate system and the
methods appropriate to reference the Cartesian coordinate
system. The turtle moves in three-dimensional space, and
projects its location in a two-dimensional representation.
The turtle concept is based in part on Ableson & Decessa
Turtle Geometry from MIT.
Decision Making Turtle (DMT) – A turtle whose actions
in the environment are based on the conditions it

perceives and a corresponding lookup into an action table.
This lookup procedure is defined through its genome.
Genome – A list of values unique to a DMT that
represents which actions are to be taken in each of the
conditions defined by the condition list.
Population – A collection of DMTs.
Fitness – A quantitative measure of a DMT’s success
relative to the goals of the simulation. One fundamental
goal of the simulation was survival of the DMT, with the
possibility of additional primary or secondary goals.
Mutation – Random alteration of a genome.
Crossover – Process by which two parents’ genomes are
used to determine the genome of offspring. Crossover
preserves genetic material of the parents involved.
Reproduction – A process that selects DMTs from the
population based on fitness, applies a genetic algorithm
using crossover and/or mutation and then introduces the
new DMTs into the environment.
Property – An instance variable that allows information
to be stored within a patch or a DMT.
Condition – The perceived state of the DMT in
combination with the patch it occupies and possibly its
neighbors. The condition must be a member of a finite set
of possible conditions, the condition list.
Condition List – The finite set of conditions derived by
considering a number of properties. These properties can
be external to the DMT (i.e. the amount of "food" present
in the near environment), and/or internal (i.e. the amount
of "energy" an individual has left).
Action – Something a DMT can do. An action is a
member of a finite set of actions able to be performed by
a DMT as specified within the action list.
Action List – The finite set of actions available to DMTs.
In our simulations, typical actions include changing
heading, moving, eating, etc.
Goal – The objective as defined by the architect of the
simulation. DMTs are not inherently coded with the
objective in mind, rather the reproduction of the DMTs is
tailored according to a fitness scale based on a goal (or
goals) to encourage the emergence of solutions.

	THE SIMULATION ENVIRONMENT
	TUTORIAL FILE SETUP
	VISUALIZATION OF LIFE

	SIMULATION ENGINE
	PATCHES AND TURTLES
	3D VIEWING OF A 2D WORLD
	MOVING AND TARGETING

	MAKING IT LIFE-LIKE
	OVERVIEW OF ARTIFICIAL LIFE
	DECISION MAKING PROCEDURE
	EVOLUTION
	COMPLEX BEHAVIOUR FROM SIMPLE BRAINS

	GENETIC ALGORITHM
	GENOME REPRESENTATIONS
	GENETIC ALGORITHM PROCEDURES

	CONCLUSIONS
	FUTURE WORK
	
	References

