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Abstract 
The new and expanding interdisciplinary field of 
artificial life (Alife) is not yet well defined and 
will mean various things to different people.  
Alife.org [2000] states broadly “The term 
Artificial Life is used to describe research into 
human-made systems that possess some of the 
essential properties of life.“  This article details 
the simulation of one such life-like  system 
implemented using Macromedia Director.  
Though many of the ideas and techniques 
relating to alife that are explored in this project 
have been studied for many years, this project 
breaks new ground as it uses Director to allow 
the user to easily visualize the life-like processes 
occuring within the simulation. 
Speciffically, this project aims to explore the 
visiualisation of two components of complex, 
life-like systems: decision making and evolution.  
This article contains four main sections, the first 
describing the simulation interface and it’s 
components, the second detailing the underlying 
representation of individual life forms and their 
environment, the third exploring the mechanism 
for decison making along with other life like 
features and the last concerned with the use of a 
genetic algorithim for the evolution of artificial 
life.  Additionally, possible future explorations 
for the project are proposed. 

1 THE SIMULATION ENVIRONMENT 

1.1 TUTORIAL FILE SETUP 
This project was developed through a seminar in artifical 
life involving faculty and students of the Department of 
Information Technology at the Rochester Institute of 
Technology.  It’s main goal is an intorduction to the 
simulation of life-like functions in an artificial 
environment. 

To get started, open the demo (alife.dir) that accompanies 
this article.  Starting the movie will create a number of 
artificial life forms and start the simulation. This group of 
life forms is the first generation.  They will begin 
performing actions based on their genetic code.  These 
actions may involve changing their movement speed and 
direction based on a number of percieved environmental 
conditions and consuming food to survive.  
 

Figure 1: View of  simulation, running with default parameters 
and variable setup. 

1.2 VISUALIZATION OF LIFE   
The moving, blue forms represent the living individuals.  
They are sometimes refered to as “Turtles“ because of 
their Logo based heritage.  The plane of green and black 
squares represents the  land that the individuals move on.  
These squares are termed “patches“.  This term come 
from StarLOGO [MIT, 2001], the simulation tool on 
which this project’s environment is based.  The more 
green a patch has the more food it contains.  A turtle will 
eat when it is on a patch that contains food.  Eating is the 
only way a turtle can increase it’s energy level.  A turtle is 
constantly using energy to maintain the functions of life 
and will spend energy faster when it moves more quickly.  



 

 

So, a turtle must spend energy to move to find food to get 
more energy, just like real life.  If a turtle is unable to find 
enough food it’s energy level will reach zero and it will 
die.  When a turtle dies it becomes red and is placed in the 
“graveyard“ at the back of the environment. 
After a certain amount of time the simulation halts and 
reproduction takes place.  The population replenishes 
itself with a new generation of turtles and the simulation 
restarts.  The generation number and the time left until the 
next generation will be generated are displayed in the 
upper left along with statiscs detailing how well the last 
generation fared, including the number of individuals that 
survived the last generation (out of 72) and the average 
age of all of the individuals at the end of the last 
generation (a maximum of 350 if all individuals survive 
to the end). 
This simulation is set to start with no auto-matic 
rebounding behaviour to keep the turtles on the board. In 
fact, you may notice a substantial number of them flying 
off in all directions in the first few stages of exolution. 
Over time however (10-20 generations) you should notice 
that many of the turtles develop their own rebounding 
behaviour (as well as a number of other behaviours 
which this paper will describe).  Such was our intent – to 
allow an object to develop behaviour without explicitly 
programming than model into the object.  Turtles rebound 
because by doing so they can continue to get food, and 
live longer, both of which are goals of the overall 
ecology.   
The controls in the upper right change the users view of 
the world.  Allowing them to move and zoom their view 
relative to the scene.  Experiment by watching turtles 
close up to note their individual difference, and by 
zooming out to note the trends in the entire population. 

2 SIMULATION ENGINE 

2.1 PATCHES AND TURTLES 
The entire basis of this simulation revolves around two 
very important concepts, the “turtle” and the “patch”.  
The “turtle” traces its heritage back to the M.I.T. “Turtle 
Graphics” work, which was first presented by Abelson 
and diSessa [Ableson & diSessa, 1980].  Also of interest 
are the similarities of this work to the “vehichles” 
presented by Braitenberg [1984, 1996].   A “turtle” has 
the following characteristics: it can perform a limited 
number of self-contained action, and in the original 
implementation, these were geometrical.  Examples of 
simple actions were things like ‘move()’ which would 
move a turtle along its forward vector the number of units 
specified by its speed.  Additionally it could turn right or 
left, set its speed to a different value, and (by combining 
these actions) rebound itself from collisions.  The turtle 
can be thought of in programming terms as the collection 
of a local coordinate system within an object, with the 
methods of that object providing manipulation of that 
coordinate axis.  Additionally, turtles usually had the 

ability to represent themselves, as some element that is 
drawn to the screen, in our implementation we have given 
the turtle a sprite property, and it uses that sprite to 
represent each turtle, or instance of the object (see figure 
2). 

 

Figure 2: A few instances of the turtle object visualized as blue 
‘mushrooms’ on the ground. 

 

The second important notion then, once a world is filled 
with turtles, is the environment that the turtle is living in, 
and in this simulation we borrow heavily from the notion 
of a “patch” used in the StarLOGO environment [MIT, 
2000].  A patch is a plot of ground that stores within itself 
certain attributes, and again we implement this structure 
as a Lingo object.  Thus a patch is really a container for 
variables that describe the environment at that particular 
geometric space.  In more complex environments the 
patches can be though of as three-dimensional bins rather 
than two dimensional planes, a turtle in our world could 
feed off a patch regardless of how high in the air it was 
floating, we only check the X and Z coordinates (Y axis is 
vertical up / down). 
The interesting thing to note about this system is that, like 
its predecessors, the turtle can only know about its current 
patch and the neighboring patches by comparison (for 
example, it may be able to deduce ‘the patch to my 
immediate North has more food than my current patch).  
They do not receive a ‘global view’ of the world any 
more than we as individuals do. Indeed just has hard-
coding behavior is relatively simple, so to is it trivial to 
simply give the turtle complete knowledge of everything 
and anything to do with its environment, and then expect 
the evolution of complex behavior.  If a turtle knows 
everything, it will simply hop from its current square to 
whichever square has the most food that it can travel to, 
and it will know if it can make it because of its god-like 
knowledge. Such a system was uninteresting to the 
authors, as it did not allow for multiple strategies to 
emerge and be incorporated into the general solution. 

2.2 3D VIEWING OF A 2D WORLD 
This world of patches and turtles then, could be presented 
from a top-down point of view, similar in some sense to 
the StarLOGO environment [MIT 2001].  Instead, the 
decision was made to leverage an existing Director 
project, the LingoLand 3D Engine [Phelps 2001].  This 
engine, while not wholly optimized for real-time 
performance, ran well enough to offer a perspective view 
of the simulation environment.  The environment is made 



 

 

up of patches, which in turn are represented by the quads 
drawn by the engine.  These tiles are expanded from the 
previous work of the terrain simulation to include 
information about the amount of food and other 
information necessary for the turtle / tile interaction 
within the tile data structure. 
The 3D engine at the heart of this environment operates 
on a few simple principles, and by using a number of 
methods that are listed here (see Table 1), and which are 
described more fully in the paper describing LingoLand 
[Phelps 2001].  First, we have linked the control of the 
engine’s camera to the buttons on the upper right of the 
screen, allowing the user to manipulate the scene.  This 
manipulates the gCamera’s properties for its X and Y and 
Z position vector, though its associated move and roll 
methods. This camera is used in the projection of the tiles 
upon the stage, causing the scene to appear in relative 
perspective. Perhaps the most useful feature of the camera 
is its ability to ‘zoom in’ on the board, offering a closer 
view of turtle behavior during the simulation. 
 
Table 1: Engine Control Variables (partially reprinted from 
LingoLand: Simple 3D Terrain Simulation in Lingo for ease of 
reference). 

VARIABLE DESCRIPTION 

max_row 

max_column 

The size of the original land matrix. 
This is the number of ‘points’ in X and 
Z that you see the original land created 
with when the movie starts. 

square_size Size in pixels of the original  tiles, the 
space between the points defined 
above. 

gCamera The viewpoint for the scene, see 
section 1.1 and 1.2 for details. 

gZoom Original zoom level used by the 
projection matrix relative to the 
camera. 

 
Removed from the original engine is support for dynamic 
lighting, as this did nothing to augment the simulation, 
and in fact made it more difficult to read the color-coding 
scheme that describes the desirability of the patch.  Also 
removed from this demo is the code that randomly 
assigned an elevation to the ground, producing the 
original output of the terrain simulation (see Figure 2). 
The removal of these features was simply for the ease of 
student use and the requirement to complete the 
simulation within an academic quarter.  Nathaniel Swart 
(Nathaniel_M_Swart@firstclass.it.rit.edu) led a student 
team that did use elevation within the simulation, using 
elevation as a criterion for food growth and as a criterion 
that helped determine the ease with which the turtles 
could move from patch to patch. 
 

 

Figure 2: Original Terrain Simulation Engine. Lighting and 
Elevation were removed for the A-Life Simulation Demo. 

 

2.3 MOVING AND TARGETING 
The movement of turtles is somewhat complex, and is 
described in its most basic sense by Kurtz in his original 
2D implementation [Kurtz, forthcoming].  The basics of 
the transformation of that engine to the engine contained 
in this project are presented by Phelps in LingoLand 
[Phelps, 2001].  A turtle contains a series of methods that 
allow it to target a number of different types of locations 
within the world, and a simple move method that moves a 
turtle along its pFwd vector.  The movement and targeting 
methods are summarized in Table 2, and are commented 
in the Lingo Code. 
 
Table 2:  Turtle Movement and Targeting Methods. See the 
VBLF script for implementation comments. 

METHOD DESCRIPTION 

new Create a VBLF. 

print Print the location vector of a VBLF 

RollLeft Roll counter-clockwise along the 
pForward vector, X-Axis upon 
creation. 

RollRight Roll clockwise along the pForward 
vector, X-Axis upon creation. 

PitchUp Roll counter-clockwise along the pLeft 
vector, Z-Axis upon creation. 

PitchDown Roll clockwise along the pLeft vector, 
Z-Axis upon creation. 

YawLeft Roll counter-clockwise along the pUp 
vector, Y-Axis upon creation. 

YawRight Roll clockwise along the pUp vector, 
Y-Axis upon creation. 



 

 

Table 2: (continued) 
VARIABLE DESCRIPTION 

Move Move a VBLF along its forward vector 
a unit equal to its speed property. 

MoveTo Reposition a VBLF to an absolute 
coordinate value. 

VBLF_Project Reset the h and v properties of a VBLF 
so that it draws on the 2D stage 
correctly. 

HeadForVect Orientes the sprite to head for the 
specified position vector. 

HeadForPt Head for the specified 3-D point (x,y,z) 

HeadForVBLF Head towards a the position of a 
second VBLF 

X, Y, Z Returns the x, y, or z coordinate of the 
turtle. 

TurnTo Turn to an absolute heading in degrees.  
Currently only implemented for the XZ 
plane. 

Distance Returns a position vector between the 
vblf and a target position. 

DSquare Same as distance but does not use sqrt 
in calculation. Distances are relative 
not scaled to the coordinate space. 

 

3 MAKING IT LIFE-LIKE 

3.1 OVERVIEW OF ARTIFICIAL LIFE 
Artificial life, most broadly, is life created by human 
effort rather than natural occurrence.  This covers a 
massive range of study and must be narrowed in this case 
to the aspects of artificial life that this project addresses.  
Resources for artificial life in general can be found in the 
annotated bibliography. 
In our case, artificial life is the simulation of life using 
computational methods.  This can have two obvious uses: 
simulating existing biological systems to gain a better 
understanding of them and simulating new systems that 
have no natural analog.  The first use is becoming more 
and more widespread and there are a number of tools 
available that allow this kind of explanatory simulation, 
including StarLogo developed at the Media Laboratory, 
MIT.  StarLogo is also used as an educational tool to 
teach students about the modeling of decentralized 
systems [MIT, 2001]. 
Our simulation has no natural analog.  It is not meant to 
shed light on some existing system, but rather to create a 
novel environment that has some of the features of a 
natural system.  This approach is becoming increasingly 
popular in computer gaming where the possibility of a 

game that conforms to its players and evolves over time is 
particularly appealing. 
This project simulates two main features of living things, 
a decision making process to choose possible actions 
based on current conditions, and evolution to adapt to an 
environment.  The implementation of these features is 
covered in the following sections. 

3.2 DECISION MAKING PROCEDURE 
Decision making is a trademark of life, and a complex 
one at that.  What a given life form does at any moment is 
based on a great number of things, and these things can be 
separated into two categories: internal and external.  The 
state of the individual and the state of the environment as 
they perceive it determines what they will do next.  This  
procedure is modeled in the simulation in a simplified 
form. 
Becuase the traditional turtle from logo can do little else 
than take movement instructions, these upgraded 
individuals are refered to as Decicision Making Turtles 
(DMTs), and are the creatures you will find roaming the 
simulation. 
At any given moment the DMT will find itself in one, and 
only one condition.  This condition is based on properties 
of both the DMT itself and it's immediate surroundings.  
In the basic simulation there are only two properties, one 
internal and one external: (1) The DMT’s energy level, 
and (2) whether or not the patch the DMT is currently on 
has food or not. 
These properties are defined as binary digits, each having 
only two possible values.  For the first, the DMT either 
has high or low energy (high and low being defined at the 
start of the simulation).  The second, food is present or 
not present.  This leads to four possible conditions, (1) 
low energy/no food, (2) low energy/food present, (3) high 
energy/no food and (4) high energy/food present.  
Replaced by binary digits these conditions are 00, 01, 10 
and 11 (or 0, 1, 2 and 3 in decimal).  So, a DMT always 
finds itself in one of those four conditions.  This covers 
one half of the decision making process, a DMT must 
now decide what actions to perform for the given 
condition. 
Along with the list of conditions, a list of actions that a 
DMT has available to it is specified.  In this simulation 
that list includes thefollowing: 
(1) nothing - DMT performs no action 
(2) speed up - DMT speeds up one speed unit 
(3) slow down - DMT slows down one speed unit 
(4) stop - DMT sets speed to zero 
(5) head for food - DMT heads for the neighboring patch 
with the most food. Each patch has 8 neighboring patches. 
If the patch that the DMT is on has more food than any of 
those 8 the DMT does nothing. 
(6) turn around - DMT turns 180 degrees 



 

 

(7) turn random amount - DMT turns a random amount, 
from 1to 360 degrees. 
(8) head for neighboring turtles - DMT heads for a the 
neighboring patch with the most DMTs on it.  If the patch 
that the DMT is currently on has more turtles than any of 
the surrounding 8 patches the DMT will do nothing. 
(9) head away from neighboring turtles - DMT heads 
directly away from the neighboring patch with the most 
DMTs on it.  If the patch that the DMT is currently on has 
more turtles than any of the surrounding 8 patches the 
DMT will do nothing. 
Notice that "move" is not an action.  This is because each 
DMT will move each frame.  If the DMT’s speed is zero 
then moving will not change that DMT’s location. 
The only thing left is to connect the conditions to the 
actions. Each DMT is given a "genome", which is a list 
that specifies the actions to be performed in each 
condition.  In this simulation, a DMT can perform up to 2 
actions in any given condition.  At the beginning, each 
DMT’s genome is randomly generated, having either 1 or 
2 random actions per condition. 
An example random genome: [3,4] [7,3] [5] [4] 
The first set of []'s corresponds to the first condition listed 
above, low energy/no food.  So, when a DMT has low 
energy and is not on a patch with food it will first slow 
down one speed unit, then stop.  It is possible for actions 
to cancel each other out when performed in the same 
condition, such as speed up and slow down. 
These conditions and actions could easily be modified and 
augmented to provide the DMTs with goals and 
considerations other than simply finding food to stay 
alive.  In one version of this simulation there were a 
number of red patches scattered around that were 
designated as “goals“ that DMTs would consider in their 
decision making process. 
A DMT’s genome will not change during their lifetime, 
so DMTs with a poor genome will die earlier than those 
with a more advantageous genome.  The population of 
DMTs, however, can improve through evolution. 

3.3 EVOLUTION 
The accepted method of evolution in nature is through 
natural selection, as formulated most famously by Charles 
Darwin.  The theory of natural selection is based on a few 
assumptions and ovservations: (1) The environment 
provides limited resources that individuals must compete 
for (2) Individuals have differences (3) Individuals can 
pass on their differences to offspring.  This leads to the 
inference that some individuals, because of their 
differences, will be more able to acquire those limited 
resources and therefor survive more easily and reproduce 
more easily. These offspring in turn will acquire some 
traits from their parents that will allow them to survive 
more easily, and so on. Over time, evolution. 

This is just the senario that has been created in this 
simulation.  The environment has limited food resources.  
Individuals differ through their mapping of conditions to 
actions. And, through their genome, better performing 
individuals can pass their traits onto their offspring. 

3.4 COMPLEX BEHAVIOUR FROM SIMPLE 
BRAINS 

The use of evolution in this simulation resulted in 
emergen behaviors.  Emergent behaviors are complex 
ones that result from the interation of some simpler 
actions. 
In this case, we programmed the DMTs with a small set 
of simple actions, but didn’t explcitly define how they are 
to be used.  The optimum use of these actions was 
determined by the DMTs evolution in their environment. 
One fairly important emergent behavior, as far as survival 
is concerned, is grazing.  In the first generation, the 
DMTs often run wildly, wasting energy, or stand still, 
failing to find food sources.  In later generations many of 
them seem to graze the environment, moving to patches 
that have large amounts of food and moving on once 
those patches are delpleted.  This behavior was in no way 
defined in the simulation but yet appears consistantly with 
several runs. 
Another emergent behavior observed was rebouding, or 
turning around upon reaching the edge of the patches.  
This behavior was explicitly programmed into the system, 
as it is in any simulation where characters can move about 
in a finite area.  In this case though the rebouding doesn’t 
always work.  DMTs, if they are stuborn enough, can 
continue to move off the edge of the patches.  The 
rebounding programmed into the simulation could most 
likely have been improved to insure no DMT could go off 
the board, but evolution provided for it after a number of 
generations.  This is because DMTs that leave the board 
have no way of obtaining food and so usually die-off 
sooner.  Through evolution these individuals reproduce 
less often and DMTs stay within the area of the patches 
more regularly.  This was tested by removing the built in 
rebouding and observing the results. To experiment with 
this yourself, make sure that the global variable 
gReboundingOn in StartMovie is set to false, and 
let the program cycle through 10-15 generations. You 
should see a marked decrease in the number of turtles that 
fly off the board over time. 

4 GENETIC ALGORITHM 

4.1 GENOME REPRESENTATIONS 
The first step in implementing a genetic algorithm (GA) is 
representing the thing you want to improve with a 
genome of some sort. In this case, since it is the decision-
making effectiveness of the individuals that we want to 
improve, the genome used in the genetic algorithm is the 



 

 

same as that used for decision-making.  That is, a list of 
actions for each condition. 

4.2 GENETIC ALGORITHM PROCEDURES 
The procedures described here are based on Goldberg’s 
explanation in his first chapter an “Introduction to Genetic 
Algorithms“ [Goldberg 1989].  Much work has been done 
on GAs in the last few decades along with a number of 
good introductions for those new to the subject. 
A genetic algorithm selects those DMTs that have 
performed better (i.e. ones that have lived longer) and 
mates them, producing a new generation of DMTs. This 
new population is produced by halting the simulation 
momentarily and performing the following steps: 
(1) Calculate each DMT's fitness - DMTs that have 
lived longer by feeding more will have a higher fitness.  
In more complex simulations fitness would be based on a 
number of criteria. 
(2) Create a mating pool - This mating pool is half the 
size of the original population. Each member of the 
mating pool is selected randomly from the current 
population, with DMTs that have a higher fitness being 
more likely to be selected. 
(3) Reproduction through crossover - Each member of 
the mating pool is mated with one other, so that each 
DMT that made it to the mating pool reproduces with one 
and only one other DMT from the mating pool. Their 
decision making genome are split at a random point, 
crossed over, and produce two offspring (see Figure 3). 
 

Parent1 = [1,2] [6] [9,4] [5] 
Parent2 = [4,4] [3] [7,2] [9,8] 
random crossover point = 3 (between third and fourth 
conditions) 
offspring1 = [1,2] [6] [9,4] [9,8] 
offspring2 = [4,4] [3] [7,2] [5] 
Both parents and both offspring are then placed into the 
next population. 

Figure 3: a simple example of cross over. 

 

(4) Mutation - each child has a small random chance that 
it's genome will be slightly altered through mutation. This 
helps to encourage diversity in the population, hopefully 
leading to better genome that might not otherwise have 
been discovered. It is the only way in this simulation to 
achieve new combinations of actions within a condition, 
as crossover only acts on combinations of sets of actions. 
(5) Restart the simulation and repeat steps 1 - 4 at set 
intervals(about one generation every 1 minute, depending 
on the speed ofyour machine). 

After a number of generations, the DMTs will begin to 
find food better and live longer. 
To track the evolution of the DMTs, the observer can 
watch the statistics in the upper left of the screen. The 
basic simulation will give two statistics: (1) the number of 
turtles left alive at the end of the generation and (2) the 
average age of the population.  Both of these will increase 
as new generations are created. 

5 CONCLUSIONS 
This project met a number of its original goals.  The 
simulation contains life-like features, namely non-
deterministic decision-making and evolution.  Equally 
important was the fact that these features were easily 
observed and understood by those with no acquaintance 
with the underlying subject matter. 
From a developer’s perspective, one of the most 
satisfying things was having the simulation develop 
unexpected, emergent behaviors and having these 
behaviors be positive ones.  This is opposed to most 
unexpected behaviors in other applications, which are 
almost always bugs needing to be fixed.  Often, the more 
life-like something is the more it can adapt and grow 
without explicit instruction and intervention. 
The educational benefits of teaching the Artificial Life 
class using Director were exceptional: Director offered a 
platform that was completely open, and had the necessary 
capabilities for this rudimentary model, while still 
offering students a familiar background against which to 
work.  Most often courses in artificial life are first taught 
in Lisp, or sometimes in C / C++.  This is usually done to 
accommodate the eventual need for recursive strategies, 
or, in some cases, code modification on the fly.  However, 
with the advent of more modern languages, these 
languages are now typically not taught as part of the 
normal student sequence, with R.I.T. and many other 
institutions moving to Java.  Director, however, manages 
to provide almost all the necessary functionality, without 
encapsulating the routines themselves such that students 
don’t feel ‘programmatically uninvolved’, which was 
some students’ reaction to the StarLOGO environment.   
Second, the course was offered as a seminar, which was a 
structure that fit part and parcel with the idea of Artificial 
Life. Each member of the class brought something unique 
to their way of thinking about the research, and without a 
set syllabus, it was possible to capitalize on many of the 
directions that students wanted to follow.  Much of the 
direction of the course was set by my co-author Dan 
Kunkle, who at a very early stage in the course began to 
think of the Turtles as having actions described by 
genomes. There are certainly other ways of implementing 
a genetic algorithm, but he was the most precise in his 
presentation of a possible direction, and the rest of the 
class followed this direction behind him. 
The final student experience for that course was positive, 
although the course received mixed reviews [R.I.T. 1999].  



 

 

Based on personal observation it would appear that the 
students who more fully explored the research of 
Artificial Life as a field felt extremely satisfied with the 
course and the final implementations, while those that 
were looking for a more traditionally structured course 
felt less satisfied, although the course evaluation metrics 
available at R.I.T. are incapable of either supporting or 
disproving this hypothesis.  We note this for the sake of 
other educators who may wish to use the material to 
found an introductory course to Artificial Life for a 
similar class of students: the incorporation of genetic 
algorithms and the evolutionary approach will take time 
for students to grasp, some of whom will become 
exceedingly frustrated when they feel they could just 
hard-wire the desired behavior with greater ease.  This 
project will likely be presented more formally from a 
pedagogical point of view in the future, but for this paper, 
which is technically oriented, it should be noted the 
response that these projects received. 
If you are considering using this material for classroom 
dissemination, please contact the author(s) for additional 
files, materials, notes etc. 

6 FUTURE WORK 
Needless to say this engine could be developed further, 
and the underlying structure has almost limitless 
possibilities in allowing sprites to develop unforeseen or 
optimized behavior, as ours developed a simple 
rebounding structure.  This is optimal for larger solutions 
in which the optimal behavior for a sprite is unknown, or 
for situations in which it is desirable for the sprite to 
demonstrate some appearance of intelligence, computer 
games offering one of the more exciting possibilities.  The 
authors hope to expand and extend the work presented 
here, possibly producing milestones and additional 
algorithmic implementations along the way.  
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Appendix A: Vocabulary 
Patch – A bin of space that stores information about itself 
and can reference the patches it is adjacent to in the 
coordinate space.  This idea is based upon the work of 
Michael Resnick and the MIT Epistemology & Learning 
Group’s STARLOGO project. 
Environment – A collection of connected patches. 
Individual or “TURTLE” - An autonomous creature.  A 
turtle contains both a local coordinate system and the 
methods appropriate to reference the Cartesian coordinate 
system.  The turtle moves in three-dimensional space, and 
projects its location in a two-dimensional representation.  
The turtle concept is based in part on Ableson & Decessa 
Turtle Geometry from MIT. 
Decision Making Turtle (DMT) – A turtle whose actions 
in the environment are based on the conditions it 

perceives and a corresponding lookup into an action table.  
This lookup procedure is defined through its genome. 
Genome – A list of values unique to a DMT that 
represents which actions are to be taken in each of the 
conditions defined by the condition list. 
Population – A collection of DMTs. 
Fitness – A quantitative measure of a DMT’s success 
relative to the goals of the simulation.  One fundamental 
goal of the simulation was survival of the DMT, with the 
possibility of additional primary or secondary goals. 
Mutation – Random alteration of a genome. 
Crossover – Process by which two parents’ genomes are 
used to determine the genome of offspring.  Crossover 
preserves genetic material of the parents involved. 
Reproduction –  A process that selects DMTs from the 
population based on fitness, applies a genetic algorithm 
using crossover and/or mutation and then introduces the 
new DMTs into the environment. 
Property – An instance variable that allows information 
to be stored within a patch or a DMT. 
Condition – The perceived state of the DMT in 
combination with the patch it occupies and possibly its 
neighbors. The condition must be a member of a finite set 
of possible conditions, the condition list.  
Condition List – The finite set of conditions derived by 
considering a number of properties. These properties can 
be external to the DMT (i.e. the amount of "food" present 
in the near environment), and/or internal (i.e. the amount 
of "energy" an individual has left).   
Action – Something a DMT can do. An action is a 
member of a finite set of actions able to be performed by 
a DMT as specified within the action list. 
Action List – The finite set of actions available to DMTs.  
In our simulations, typical actions include changing 
heading, moving, eating, etc. 
Goal – The objective as defined by the architect of the 
simulation. DMTs are not inherently coded with the 
objective in mind, rather the reproduction of the DMTs is 
tailored according to a fitness scale based on a goal (or 
goals) to encourage the emergence of solutions. 
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