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Abstract 
 

This article outlines the process of creating a 
water simulation with semi-realistic properties 
for use in a typical game engine or other real-
time 3D environment.  Water simulation is 
broken down into three major areas: wave 
propagation, refraction, and reflection. Also 
discussed are additional solutions for multi-
texturing and tiling of the textures needed to 
produce the simulation, as well as discussion of a 
technique to incorporate a projection into texture 
space to simulate a cubic container such as a 
pool or trough without the underlying geometry.   
An example of the simulation is provided using a 
Shockwave3D implementation.  This file is 
written in the Lingo language for backwards 
compatibility only: it is wholly capable of being 
ported to the Javascript like syntax in DMX 
2004.  A screenshot of the running simulation is 
provided in Figure 1: 

 
Figure 1: Water simulation with projective texturing, refraction, 
reflection, and secondary texture blending - #OpenGL renderer. 

1 WAVE GENERATION & 
PROPOGATION 

There are several available methodologies to approximate 
wave propogation across a surface.  There appear to be, 
upon brief literature review, three major approaches to 
wave propogation, each of which is suitable and 
believable in certain contexts.  These are sinusoidal 
manipulation of a heightfield, manipulation of a 
hieghtfield based on recursive noise funtions ( Perlin 
noise and/or some other suitable variation ), and direct 
copy of values in a two-dimentional array based on height 
values in the previous frame. 

1.1 SINUSOIDAL MANIPULATION 
The first of these techniques, sinusoidal manipulation, is 
fairly straightforward.  Time (t) is calculated per-frame, 
and a height value is constructed for each vertex of a 
height field based on (t) length along a plot of the sine 
function.  Thus for each value (t)  a height value is plotted 
long the x- and y-axis.  If the viewer is of sufficient 
distance from the water, this undulating pattern can be 
portrayed simply by an animated bump-map on the 
surface [1].   
Some other variations on this methodology call for 
varying offsets in sin() along the y-axis relative to x, or 
for modulation of several sine waves together at differing 
intervals [2][3].  Still others call for random variations in 
(t) to produce irregular ripple effects.  The weakness of 
this effect (when unmodified) is relatively apparent: the 
water feels too regular, and the waves do not interact with 
the environment [4].  Nonetheless, with careful 
manipulation and mapping implementations, this 
technique can look very convincing.  It is also possible to 
add specific water droplets or waves using sprite-overlay 
techniques, instead of simulating them all in the base 
surface itself [5].  An advanced implementation of 
sinusoidal water animation is provided by Snook [6], and 
several other sources. 



1.2 NOISE BASED WAVES 
The second technique involves layers of noise over 
several generations.  Patterns of ripples and waves can be 
created by summing up band-limited noise to make 
texture maps or height-field data representative of 
waveforms [7][8].  These layers are then animated to 
produce ripple effects based on a time-based strategy very 
similar to that used when dealing with sinusoidal 
animation. 
An advantage of both this and the previous technique that 
is worth noting is that they both, unlike the following 
technique, can be made seamlessly tileable with very little 
effort.  Any square patch of water can be placed 
seamlessly next to another, and waves will appear to 
propogate across the two of them, provided that their 
usage of either sin() or the noise() functions are in synch.  
The disadvantage of this approach is that it is very difficul 
to animate water emanating from a particular point on the 
surface, such as would occur from a splash or droplet. 

1.3 ARRAY BASED WAVES 

1.3.1 Array Construction 
The final seemingly major methodology for wave 
generation and propogation is the so-called "array-based“ 
approach.  This method creates two 2-dimensional arrays 
in which to store height values for the water field (as a 
point of optimization, it is often better to create one-
dimensional arrays and simulate 2D by using x and y 
offsets into the index lookup).  The sample file here uses 
the algorithm presented by Mason McCusky in his test on 
special effects [9], although several implementations of 
this approach are similar. 
The two arrays, which can be thought of as oldWater and 
newWater, are populated with an initial height value.  For 
simplicity, the demo program uses zero as the initial 
value, although it is very feasible to 'pre-seed’ the waave 
field by providing initial values. 
Every frame, the a copy of the oldWater array is stored, 
the newWater array is dumped into the old, and the 
newWater array is replaced with a copy of the oldWater 
array, as shown in figure 2.  This will have direct 
ramification once one of the values is non-zero inside the 
array, and once the arrays are 'processed’ before being 
copied. 
------------------------------------------- 
--cycle the arrays 
------------------------------------------- 
aTemp = D3D_WORLD[#g_aOldwater] 
D3D_WORLD[#g_aOldwater] = \ 
D3D_WORLD[#g_aNewwater].duplicate() 
D3D_WORLD[#g_aNewwater] = aTemp 
 
Figure 2: Managing exchange between old and new water arrays per-
frame. 

 

1.3.2 Wave Propogation 
Once this system is in place, the trick to creating waves is 
then two-fold.  The first is to choose a point, or set of 
points, on the oldWater array, and assign a non-zero 
height to the element in that position.  This creates a 
‘spike’ or a ‘dent’ in the height-field depending on the 
seed value’s sign. 
Next, the values from the oldWater array are used to 
replace values in the newWater array, by sampling the 
neighbors of the cell in the array in both the vertical and 
horizontal directions.  In simple terms, the value in the 
newWater array will be the value in the oldWater array 
modified by the neighboring values in the oldWater array.  
This created waves that ripple outward concentrically if a 
single point is used as a seed value, or that undulate as 
linear waves if a row of seed values is placed into the 
oldWater array.  When the frames cycle, the newWater 
array is copied into the oldArray and the next set of waves 
is computed from the existing values. 
This would produce waves that flow in perpetuity were it 
not for the fact that each time the average of neighboring 
values is taken, a dampening factor is applied to reduce 
the strength of the wave.  Depending on this value, the 
fluid can appear to be highly elastic, or very viscous.  
Dampening values between 1.05 and 1.5 seem to give the 
best visual result for standard water, assuming a frame-
rate of approximately 30FPS.  The algorithm for wave 
processing is presented in Figure 3. 
-------------------------------------------
-- Process Water Arrays 
------------------------------------------- 
on ghProcessWaterArrays 
repeat with cy = 1 to \ 
D3D_WORLD[#g_iWaterHeight] 
repeat with cx = 1 to \ 
D3D_WORLD[#g_iWaterWidth] 
       
x = cx - 1 
y = cy - 1 
       
------------------------------------------- 
--add up all the neighboring water   
--values 
------------------------------------------- 
iXminus1 = x-1 
if iXminus1 < 0 then iXminus1 = 0 
iXminus2 = x-2 
if iXminus2 < 0 then iXminus2 = 0 
iYminus1 = y-1 
if iYminus1 < 0 then iYminus1 = 0 
iYminus2 = y-2 
if iYminus2 < 0 then iYminus2 = 0 
       
iXplus1 = x+1 
if iXplus1 >= \ 
   D3D_WORLD[#g_iWaterWidth] then \ 
     iXplus1 = \  
     D3D_WORLD[#g_iWaterWidth]-1 
 
iXplus2 = x+2 
if iXplus2 >= \ 
   D3D_WORLD[#g_iWaterWidth] then \ 
     iXplus2 = \  
     D3D_WORLD[#g_iWaterWidth]-1 
 



iYplus1 = y+1 
if iYplus1 >= \ 
   D3D_WORLD[#g_iWaterHeight] then \ 
     iYplus1 = \ 
     D3D_WORLD[#g_iWaterHeight]-1 
 
iYplus2 = y+2 
   if iYplus2 >= \ 
   D3D_WORLD[#g_iWaterHeight] then \ 
      iYplus2 = \ 
      D3D_WORLD[#g_iWaterHeight]-1 
       
iValue = \      
D3D_WORLD[#g_aOldwater][((y)*\                  
D3D_WORLD[#g_iWaterWidth])+iXminus1+1] 
 
iValue = iValue + \ 
D3D_WORLD[#g_aOldwater][((y)*\                   
D3D_WORLD[#g_iWaterWidth])+iXplus1 +1] 
       
iValue = iValue + \ 
D3D_WORLD[#g_aOldwater][((iYminus1)*\                   
D3D_WORLD[#g_iWaterWidth])+x+1] 
       
iValue = iValue + \ 
D3D_WORLD[#g_aOldwater][((iYplus1 )*\                        
D3D_WORLD[#g_iWaterWidth])+x+1] 
       
iValue = iValue * 0.5 
       
------------------------------------------- 
--subtract the previous water value 
------------------------------------------- 
iValue = iValue - \ 
D3D_WORLD[#g_aNewwater][(y*\               
D3D_WORLD[#g_iWaterWidth])+x+1] 
       
------------------------------------------- 
--dampen it 
------------------------------------------- 
iValue = integer(float(iValue)/1.05) 
       
------------------------------------------- 
--store it in the array 
------------------------------------------- 
D3D_WORLD[#g_aNewwater][(y*\ 
D3D_WORLD[#g_iWaterWidth])+x+1] = iValue 
       
end repeat 
end repeat 
   
end ghProcessWaterArrays 
 
Figure 3: Manipulating water arrays for wave propagation based on 
previous neighboring values.  Lingo implementation of McCusky’s more 
complete example in [9], optimized by reducing the sampling algorithm 
to a single cell in each direction (as opposed to 2 or 3). 

 

 

The advantages of array-based waves are based upon their 
pattern of propagation.  It is very easy to produce waves that 
generate outward in rings from a single source, and it is also 
easy to “bounce” waves off the sides of containers or pools, as 
the edges of the array naturally produce this effect when using 
the array oriented methodology.  The disadvantages of this 
approach are the long calculation time for the 
processWaterArrays() function, and the memory overhead of 
storing two height-maps.  While the resolution in the 
demonstration application (a 14x14 grid) can calculate relatively 

quickly on modern hardware, this technique is not truly scalable 
to high resolution meshes at interactive frame-rates. 

It should be noted also that the geometry used for the water in 
this demo is not optimal for the wave generation method 
selected.  For waves using array-based approaches, and in 
particular attempting to do wave “rings”, the standard triangle 
“patch” where all the triangles present their diagonals in the 
same facing direction will introduce artifacts into the ripple 
pattern.  Figure 4 presents the standard mesh generation, and an 
optimized mesh for correct waveform representation. 

 

 
Figure 4: Non-optimal (left) and optimized (right) triangle interlay 
patterns for water mesh to be used with droplet based wave forms and 
array-based propagation. 

 

Finally, it is possible, and sometimes desirable, to calculate a 
low-resolution water array for use with a higher resolution mesh.  
This can have the advantage of processing the water arrays very 
quickly, but controlling a mesh of greater resolution, which can 
therefore look smoother onscreen.  This has the effect of 
“rounding” or “smoothing” the waves, as the mesh vertices that 
fall in-between the points in the water arrays generally take the 
weighted average of the two closest points along the x- and y-
axis.  In this way, the water array can be thought of as a ‘control 
mesh’ relative to the actual surface, in a similar manner to the 
#meshDeform modifier in the Shockwave3D environment. 

2 REFRACTION 

2.1 SURFACES AND REFRACTIVE RAY 
CALCULATION 

The basic “look and feel” of water (or for that manner any 
transparent liquid) comes from a combination of its 
refractive and reflective properties.  Refraction is a 
recognition of the fact that as light enters the surface of 
the liquid, it is bent, or refracted, before reaching the 
bottom of the container that holds the liquid.  Several 
approaches for simulating this physical phenomenon exist 
in computer graphics, the most recent of which focus on 
using a combination of vertex and pixel shaded 
techniques to calculate the offset, or refraction, between 



the point at which light strikes a surface, and where on the 
bottom of the container the light would land. 
The physics formulas for light bending can be 
significantly involved.  A brief summation (and one that 
ignores internal currents and movement’s of a 3-
dimensional body of water) is Snell’s Law.  This theorem 
describes the two environments that the light passes 
through (the air and then the water) as each having an 
index of refraction n.  For a perfect vacuum, n=1.000.  
Water is generally in the range of n = 1.3333.  For a 
completely smooth surface, the calculation of Snell’s Law 
can be computed using the formula in Fig 5: 

)sin(*)sin(* 2211 θθ nn =  
 

Figure 5: Basic formula of Snell’s Law, for light traveling between two 
surfaces with differing refractive properties. 

 

Using this representation falls short, however, in 
computing a convoluted surface.  Instead, the approach 
that Vlachos and Mitchell implement in their construction 
of a water simulation [10] rotates the axis around which 
the angles are calculated to be planar with the normal of 
the surface at the point of intersection.  This is in fact a 
practical matter that most such simulations implement.  
Thus, 1θ is not the angle of incidence from the world Y-
axis, but rather the angle between the eye-vector of the 
viewer and the normal of the water surface for that 
particular vertex (or pixel).  This forms the basis of 
computing the refracted ray from the incoming ray 
between intersection and viewer.  This is implemented in 
the code presented in figure 6: 
-------------------------------------- 
--compute camera view 
-------------------------------------- 
VectCamPos = pSprite.camera.\ 
             transform.position 
vertex_current = lWaterVertex[cnt] 
camera_ray = VectCamPos - vertex_current 
camera_ray = camera_ray.getnormalized() 
 
tmpf = 1.0 / \ 
float(sqrt(camera_ray.x*camera_ray.x+\   
      camera_ray.y*camera_ray.y + \                                 
      camera_ray.z*camera_ray.z)) 
 
camera_ray.x = (camera_ray.x *tmpf) 

camera_ray.y = (camera_ray.y *tmpf) 
camera_ray.z = (camera_ray.z *tmpf)         
camera_ray = camera_ray.getNormalized() 
 
-------------------------------------- 
--compute N.I 
-------------------------------------- 
tmpf = vertex_normal.x*camera_ray.x+\    
  vertex_normal.y*camera_ray.y + \  
  vertex_normal.z*camera_ray.z 
 
tmpf2 = 1.0 - ((0.5625) * (1.0-\ 
              (tmpf*tmpf))) 
tmpf2 = float(sqrt(tmpf2)) 
tmpf2 = (0.75*tmpf) - tmpf2         
norm = vector(0,0,0) 
 
norm.x = (tmpf2*vertex_normal.x) – \  
         (0.75*camera_ray.x) 
norm.y = (tmpf2*vertex_normal.y) – \  
         (0.75*camera_ray.y) 
norm.z = (tmpf2*vertex_normal.z) – \ 
         (0.75*camera_ray.z) 
tmpf2 = 1.0 / float(sqrt(norm.x*\ 
          norm.x + norm.y*norm.y +\ 
          norm.z*norm.z)) 
norm.x = norm.x*tmpf2 
norm.y = norm.y*tmpf2 
norm.z = norm.z*tmpf2 
         
-------------------------------------- 
--point on surface 
-------------------------------------- 
mInc =1.0/((D3D_WORLD[#g_iWATERWIDTH]\ 
      ) -1.0) 
nInc=1.0/((D3D_WORLD[#g_iWATERHEIGHT]\ 
     ) -1.0)         
tmpv = vector(0,0,0) 
tmpv.x = ((j*mInc)*0.998+0.001) * \ 
         D3D_WORLD[#g_fWaterAspect]       
tmpv.y = (i*nInc)*0.998+0.001  
tmpv.z = 0.0 
 
Figure 6: Implementation of Snell’s Law on a per-vertex basis.  Adapted 
from C/C++ source code by Vlachos and Mitchell in [10]. 

While this implementation is correct, it is computationally 
intensive.  It is necessary to perform these steps if 
projected texturing is desired, as the calculation of N.I is 
particularly critical.  For implementations that aren’t 
trying to simulate a box-style container, and are only 
concerned with the illusion of water overtop of a flat floor 
texture, significant optimizations can be made, as noted 
by Anton Pieter van Grootel [11].  A substantially 
simplified implementation using this approach is 
presented in Figure 7: 
 
refracted_ray = -(vertex_normal * \ 
    D3D_WORLD[#g_fRefractCoeff] + \ 
    camera_ray) 
         
refracted_ray = \ 
refracted_ray.getnormalized() 
         
final_depth = pInitialDepth +\  
    (vertex_current.y - \                
    D3D_WORLD[#g_aNewwater][(i)*\                   
    D3D_WORLD[#g_iWATERWIDTH]+j+1]) 
         
t = final_depth /  

1θ  

2θ  

1natmosphere =

2nwater =

Light Ray 



    float(refracted_ray.y) 
 
map_x = vertex_current.x + \ 
        refracted_ray.x*t 
map_z = vertex_current.z + \ 
        refracted_ray.z*t 
 
texCoord[1] = (map_x – \  
               D3D_WORLD[#g_fXI])*\     
(D3D_WORLD[#g_fInterpolationFactorX]/\                   
(1.000/D3D_WORLD[#g_fTexRepeatU])) 
 
texCoord[2] = (map_z –  
               D3D_WORLD[#g_fZE])*\       
(D3D_WORLD[#g_fInterpolationFactorZ]/\                   
(1.000/D3D_WORLD[#g_fTexRepeatV])) 
 
Figure 7: Implementation of Snell’s Law on a per-vertex basis.  Adapted 
from source code by Anton Pieter van Grootel in [11]. 

 
Note here that we are not technically calculating Snell’s 
Law: van Grootel has interestingly noted that a quick 
approximation of the formal ))sin(*33arcsin(1.3 1θ is to 
use refracted_ray = -(vertex_normal * refraction_coeff + 
camera_ray), where refraction_coeff is just a scalar,  
thereby faking Snell's law without the overhead of 
trigonometry.  This greatly simplifies the necessary 
calculations, but does not provide enough information to 
simulate the sides of a container in map coordinate space 
in and of itself.  Still, the effect is almost as compelling at 
significantly reduced computational intensity. 
 

2.2 TEXTURE MAPPING AND COORDINATE 
LOOKUPS 

The previos figure also featured the base calculation of 
texture coordinates for each vertex, offset by bending of 
the refractive ray. For each vertex, the algorithm 
computes a texCoord consisting of a u/v pair.  It should be 
noted that this author has slightly modified van Grootel’s 
original implementation to account for a repeating texture 
across the bottom of the water surface.  In the demo file, 
users can set D3D_WORLD[#g_bUseProjectiveTex-
turing] to false to see this technique in action. 

 

2.3 SIMULATION OF BASIC CONTAINERS 
The above technique, however, does not account for 
perspective correction in the texture lookup.  More 
correctly, it does not account for the refractive rays to 
strike the sides of a container rather than the bottom.  For 
liquids in simple containers, such as a pool, this is a 
substantial shortcoming. 
Using information from the original work by Vlachos and 
Mitchell, it is entirely possible to re-implement their 
solution in Shockwave3D.  Their solution to this issue 
revolves around the concept that the refracted ray will hit 
one of 5 sides of a container: one of the four walls, or the 

floor, and then shifts the texture coordinate lookup 
accordingly.  Thus, things that hit the floor map to the 
center area of a texture, and the walls to the outlying 
areas.  Camera position and surface normal (through 
calculation of N.I) is used to only show sides that would 
be visible from that angle.  Thus, this approach simulates 
the look of a 3D container using texture lookups, rather 
than geometry.  While not as detailed as a full geometric 
mesh, this technique can produce very realistic results, 
with only minor inperfections.  The algorithm for 
determining wall intersection and u/v coordinate lookup is 
presented in Figure 8. 
------------------------------------------- 
        --point on surface 
-------------------------------------------        
mInc = 1.0/((D3D_WORLD[#g_iWATERWIDTH] )-\ 
1.0) 
nInc = 1.0/((D3D_WORLD[#g_iWATERHEIGHT])-\ 
1.0)  
         
tmpv = vector(0,0,0) 
tmpv.x = ((j*mInc)*0.998+0.001) *   
          D3D_WORLD[#g_fWaterAspect] 
tmpv.y = (i*nInc)*0.998+0.001  
tmpv.z = 0.0 
         
------------------------------------------- 
/* Intersect with left plane (-1 0 0 0) */ 
------------------------------------------- 
if (norm.x = 0.0) then --Parallel to plane 
    dist[1] = the maxInteger 
else 
   dist[1] = (tmpv.x) / (-norm.x)  
end if 
         
if (dist[1] < 0.0) then   --If behind ray 
   dist[1] = the maxInteger 
end if      
------------------------------------------- 
/* Intersect with right plane (-1 0 0 -1)*/ 
------------------------------------------- 
if (norm.x = 0.0) then --Parallel to plane 
   dist[2] = the maxInteger 
else 
   dist[2] = (-D3D_WORLD[#g_fWaterAspect] +  
             tmpv.x) / (-norm.x) 
end if         
if (dist[2] < 0.0) then  --If behind ray 
   dist[2] = the maxInteger 
end if        
------------------------------------------- 
/* Intersect with bottom plane (0 -1 0 0)*/ 
------------------------------------------- 
if (norm.z = 0.0) then --Parallel to plane 
   dist[3] = the maxInteger 
else 
   dist[3] = (tmpv.y) / (-norm.z) 
end if        
if (dist[3] < 0.0) then  --If behind ray 
    dist[3] = the maxInteger 
end if       
------------------------------------------- 
/* Intersect with top plane (0 -1 0 -1) */ 
------------------------------------------- 
if (norm.z = 0.0) then --Parallel to plane 
   dist[4] = the maxInteger 
else 
   dist[4] = (-1.0 + tmpv.y) / (-norm.z) 
end if        
if (dist[4] < 0.0) then  --If behind ray 



   dist[4] = the maxInteger 
end if      
------------------------------------------- 
/* Intersect with floor plane (0 0 -1 1) */ 
------------------------------------------- 
dist[5] = (D3D_WORLD[#g_fWaterDepth] +  
           tmpv.z) / (-norm.y) 
 if (dist[5] < 0.0) then  --//If behind ray 
    dist[5] = the maxInteger 
end if 
------------------------------------------- 
--/* Find closest wall */ 
------------------------------------------- 
tmpi = 1 
if (dist[2] < dist[tmpi]) then  
   tmpi = 2 
end if       
if (dist[3] < dist[tmpi]) then  
   tmpi = 3 
end if       
if (dist[4] < dist[tmpi]) then  
   tmpi = 4 
end if       
if (dist[5] < dist[tmpi]) then  
    tmpi = 5 
end if 
    
 
 
------------------------------------------- 
--/* Floor */ 
------------------------------------------- 
if (tmpi = 5) then           
tmpv.x = tmpv.x + norm.x*dist[tmpi] 
tmpv.y = tmpv.y + norm.z*dist[tmpi] 
tmpv.z = tmpv.z + norm.y*dist[tmpi]  
-------------------------------------------       
--Use y and z to figure out texture cords 
------------------------------------------- 
texCoord[1] = tmpv.x/ \ 
    D3D_WORLD[#g_fWaterAspect]*0.5 + 0.25 
texCoord[2] = tmpv.y*0.5 + 0.25          
------------------------------------------- 
--/* Left Wall */ 
------------------------------------------- 
else if (tmpi = 1) then 
tmpv.x = tmpv.x + norm.x*dist[tmpi] 
tmpv.y = tmpv.y + norm.z*dist[tmpi] 
tmpv.z = norm.y*dist[tmpi]           
-------------------------------------------          
--Use y and z to figure out texture coords 
------------------------------------------- 
texCoord[1] = -0.25*tmpv.z/ \ 
          D3D_WORLD[#g_fWaterDepth] 
texCoord[2] = ((texCoord[1])) + \ 
          (tmpv.y*((1.0-2.0*texCoord[1]))) 
------------------------------------------- 
--/* Right Wall */ 
------------------------------------------- 
else if (tmpi = 2) then        
tmpv.x = tmpv.x + norm.x*dist[tmpi] 
tmpv.y = tmpv.y + norm.z*dist[tmpi] 
tmpv.z = norm.y*dist[tmpi]       
-------------------------------------------          
--Use y and z to figure out texture coords 
------------------------------------------- 
texCoord[1] = -0.25*tmpv.z/ \ 
              D3D_WORLD[#g_fWaterDepth] 
texCoord[2] = ((texCoord[1])) + \ 
           (tmpv.y*((1.0-2.0*texCoord[1]))) 
texCoord[1] = 1.0 - texCoord[1] 
------------------------------------------- 
--/* Bottom Wall */ 
------------------------------------------- 

else if (tmpi = 3) then         
tmpv.x = tmpv.x + norm.x*dist[tmpi] 
tmpv.y = tmpv.y + norm.z*dist[tmpi] 
tmpv.z = norm.y*dist[tmpi]        
------------------------------------------- 
--Use x and z to figure out texture coords 
------------------------------------------- 
texCoord[2] = -0.25*tmpv.z/ \ 
              D3D_WORLD[#g_fWaterDepth] 
texCoord[1] = ((texCoord[2])) + \ 
       (tmpv.x/D3D_WORLD[#g_fWaterAspect]*\ 
       ((1.0-2.0*texCoord[2]))) 
------------------------------------------- 
--/* Top Wall */ 
------------------------------------------- 
else if (tmpi = 4) then 
tmpv.x = tmpv.x + norm.x*dist[tmpi] 
tmpv.y = tmpv.y + norm.z*dist[tmpi] 
tmpv.z = norm.y*dist[tmpi] 
           
------------------------------------------- 
--Use x and z to figure out texture coords 
------------------------------------------- 
texCoord[2] = -0.25*tmpv.z/\ 
              D3D_WORLD[#g_fWaterDepth] 
texCoord[1] = ((texCoord[2])) + \ 
      (tmpv.x/D3D_WORLD[#g_fWaterAspect]*\ 
      ((1.0-2.0*texCoord[2]))) 
texCoord[2] = 1.0 - texCoord[2] 
end if 
 
Figure 8: Implementation of simple container simulation on a per-vertex 
basis.  Adapted from C/C++ source code by Vlachos and Mitchell in 
[10]. 

 

3 REFLECTION 

3.1 TEXTURE MAP CALCULATION 
The second property that any water simulation needs to 
account for in order to display a semi-realistic looking 
liquid is reflection.  Water not only bends entering light, it 
also reflects it back towards the viewer.  This demo 
computes reflected light on a per-vertex algorithm, in the 
same way it does for refraction.  The code to generate a 
u/v pair for reflection is presented in figure 9: 
------------------------------------------- 
-- reflection 
------------------------------------------- 
dotCamVertexNormal = camera_ray.dot( \ 
                     vertex_normal) 
reflected_ray = 2.0 *dotCamVertexNormal* \ 
                vertex_normal - camera_ray 
reflected_ray = \ 
              reflected_ray.getnormalized() 
 
texCoord[1] = (reflected_ray.y + 1.0) / 2.0 
texCoord[2] = (reflected_ray.y + 1.0) / 2.0 
 
Figure 9: Implementation of reflective texture coordinates.  Adapted 
from source code by Anton Pieter van Grootel in [11]. 

 
This manner of texture map calculation greatly purturbes 
the underlying texture (and this solution is further 



modified by the author to use the y coordinate for both u 
and v texture coordinate lookups rather than tying u to 
either x or z as per the original implementation, which 
produces a more chaotic effect ).  The reflective texture is 
then blended with the original texture as a second texture 
layer.  The exact blend is specified in the D3D_WORLD[ 
#g_iReflectBlend] variable that is set in the 
startmovie script.  Figure 9 shows the simulation running 
with a reflect blend level of 100 (totally reflective), 50 
(half-and-half blend between reflective and refractive 
textures), and 0 (no reflection).  NOTE: the blending of 
the texture, with separate texture coordinates is only  

 
Figure 10: Water with a base refract map and an overlaid reflect map, 
with reflect at 100% opacity (top-left), 50% opacity (top-right), 0% 
opacity (bottom-left), and the simulation default of 35% (bottom-right). 

 
possible in the Shockwave 3D environment if the 
underlying mesh is constructed using the undocumented 
#layers argument to the newMesh() command [12], 
which specifices the number of texture coordinate layers 
to assign to the mesh.  For this reason, the mesh creation 
script is modified from its original implementation by 
Catanese [13]. 

3.2 TEXTURE MAP GENERATION 
The water demo presented here uses a static reflect map.  
It would be possible, using a variety of techniques, to use 
cameras in the 3D scene to take images or snapshots at 
startup, and to use those images to construct a more 
complete reflect map of the environment.  In engines that 
support render-to-texture functionality, this can be done in 
real-time.  Using such techniques could add a further 
element of realism to the reflection map than is presented 
here, although the chaotic nature of this particular method 
of texture coordinate calculation may make such gains of 
negligible value, if the visual impact of more complete 
reflections is not discernable.  

4 2D WAVE TEXTURING 
As a final added detail, the water simulation creates a 
very low-res image that calculates the color of the wave at 
a given vertex.  This is presented as a very performance-
friendly way of simulating a Fresnel term, without any of 
the calculation usually involved in computing such 
solutions.  It must be noted, however that increasing the 
size of the texture drastically increases its computation 
time, and images of sufficient size will bring the entire 
simulation to a halt.  By using the texture blurring 
capabilities on modern graphics hardware,  very low-res 
images can produce acceptable results. 
Essentially each of the vertices of the array can also be 
though of as a pixel in an image.  For each vertex, a color 
is calculated and drawn to an image at that location.  This 
image is then overlaid as a third and final texture to the 
water in the simulation.  Color is calculated in one of two 
ways, either by using a refract-map technique similar to 
that presented in [9], or by using a simple height ramp (ie 
based on the y-axis coordinate of the matching vertex).  
Figure 11 shows sample of this kind of texture at a 
resolution of 16x16 pixels, for 48 frames. (Note that the 
images are generally only used as a texture in the 3D 
world and not written out as images).   

 
Figure 11: Water textures at 16x16 resolution and color-ramped from 
blue to white based on vertex height. 

5 FUTURE WORK 

5.1 CAUSTICS 
One area which this simulation completely ignores is the 
development of a real-time caustics simulation.  Such 
work, like that by Guardado and Sanchez-Crespo[14], 
could lend another level of realism to the simulation, and 
further enhance the illusion of light playing across the 
surface of the water.  Imaging solutions could likely be 
built to approximate the effect without the use of vertex 



and pixel shaders for use in low-performance 
environments. 

5.2 REFLECT/REFRACT MAPS 
The current implementation of a reflect texture and per-
vertex refract calculation, while somewhat optimal, is 
often not as visually appealing as it could be at low mesh 
resolutions.  It is possible that mapping between the 
vertices using additional textures and blurring would 
produce more seamless results, and additional tricks with 
mapping coordinates are certainly possible.  This avenue 
seems promising for further extending the effect without 
significant overhead: if inter-vertex mapping solutions are 
found to be optimal, the resolution of the overall mesh 
could be reduced yet further. 

6 CONCLUSION 
This demo explores the combination of several current 
techniques to construct a simulation of realistic water.  
While the water produced here is visually acceptable, it 
would be greatly enhanced (and operate significantly 
faster) through a shading language.  However, since many 
environments still do not support such a language, this 
implementation may provide a decent alternative until 
that technology is more widely adopted.  This water 
simulation should provide some insight into how to 
establish real-time water for other games and virtual 
worlds that require such a visual effect. 
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