
Methodologies for Quick Approximation of 2D Collision Detection
Using Polygon Armatures

Andrew M Phelps

Assistant Professor
Information Technology Dept.

Rochester Institute of Technology
Rochester, NY, 14623
http://andysgi.rit.edu/

 Aaron S. Cloutier

Multimedia Graduate Asst.
Information Technology Dept.

Rochester Institute of Technology
Rochester, NY, 14623

Abstract

Collision detection is a technique used in several
areas related to computer graphics. This paper
focuses on collision detection as it relates to
sprite-based engines, or more precisely engines
that incorporate the use of non-geometric shapes
in a two-dimensional view. The theories
presented here are applicable to projects
produced in Macromedia Director® using the
built-in “sprite-based” engine, as well as
“Imaging Lingo” and Shockwave-3D®
environments (the last of which can operate as a
2D engine when the camera for the scene
employs the use of orthographic rather than
perspective projection). Of particular interest is
the focus on mu lti-tiered approaches to collision
detection, which is especially critical in the
Director / Lingo environment due to the fact that
Lingo is an interpreted language, and performs
like one. Several theories central to computer
graphics and collision detection are briefly
discussed and dissected, with appropriate
references to more complete explanations
provided as appropriate. A final implementation
of a system using polygon-armatures is then
shown as it relates to the development of the
authors’ 3D Game Engine. The code samples
used in this paper are available here.

1 MULTI-TIERED COLLISION
DETECTION

1.1 RELATIVE COST AND THE CASE FOR
MULTIPLE SIMULTANEOUS STRATEGIES

In any discussion of methodologies for collision detection
it should be noted that no single method is likely best for
all situations. It should also be relatively clear that
methods will vary with regard to their ‘cost’ – meaning
that each will have associated with it a certain level of

computational complexity relative to the level of accuracy
in detecting collision. Generally speaking, the more
precise the accuracy of a given methodology, the more
computationally intensive the calculation, and the larger
the drain on the overall program. This is especially true
of a classic game engine, in which collision detection is
often employed every frame, or at the very least each
cycle that polls for user input (depending on the game
logic for the particular situation).

Given that each methodology has a cost that can be
determined either through calculation, programmatic
implementation, or a combination of the two, and that this
cost varies somewhat proportionally to the speed of the
detection algorithm, it should come as no surprise that a
common practice in computer graphics is to employ
several algorithms at once in a given engine, ranked in
order of their cost from lowest to highest. A given pass
for collision detection will then begin by checking all
registered nodes using very quick, but simplistic, means
and if intersection is not found will exit at this stage. If
intersection is returned by the course methodology, then a
more refined test will be employed with greater accuracy
to determine if in fact the two objects that previously
returned intersection do in fact intersect. This can be
repeated a number of times until the overall system
exhibits the visual accuracy desired. It is important to
note, however, that the test at each stage must return a
value indicating intersection if it is at all possible that the
operands intersect as a failed test at any stage will thus
invalidate any test further down the chain.

1.2 TREES AND SPATIAL PARTITIONING

A first optimization common to collision detection
schemes is to check only those entities that are nearest
each other, relative to some spatial partitioning system.
In a simple ‘Space Invaders’ type game, for example, it is
relatively pointless to check and see whether each of the
Invaders has collided with the player’s ship at the bottom
of the screen. Only those Invaders that have successfully
reached the lower portion of the screen have even a

http://www.macromedia.com/devnet/mx/director/articles/collision_detection/collision_lingo.txt

remote chance of intersecting with the player’s ship, and
to check each of the Invaders on the screen (or worse yet
those waiting in the off-screen pool) would be incredibly
wasteful.

What is needed, instead, is a way to know, before
employing a more complex collision detection method-
ology, which sprites or objects it makes sense to apply
that future test against. This is commonly done use a tree-
based structure, which is representative of a spatial
partitioning of the game space in two or three dimensions.

Akenine-Möller and Haines[1] give a solid explanation of
several different types of trees, the most easily envisioned
of which is a tree that relies on axis -aligned partitioning
units, and which are based on tree structures commonly
referred to as ‘quad-trees’ or ‘oct-trees’ in two or three
dimensions, respectively. In the case of the quad-tree,
screen space is split once horizontally, and once
vertically, dividing the space into four quadrants, most
often of equal size (see Figure 2, and for an imple-
mentation of the same technique in three dimensions refer
to figure 3). For each element to be involved in collision
detection, that element is added to any tree-node in which
it overlaps. This process is repeated such that any
available bin (which on the tree can be thought of as a
node) can be further subdivided into four more quadrants
(again refer to Figure 1), with the objects being reassigned
to which node they now belong to, or in tree-based
parlance “pushed down to the lowest possible leaf node”.

Figure 1: Quad-tree axis-aligned scene subdivision, based in part upon
Figure 9.4 presented by Akenine-Möller and Haines[1].

The second variety of tree commonly found in computer
graphics for the purpose of scene subdivision is the
Binary Space Partitioning (BSP) Tree. BSP trees can
employ the same methodologies used above, but each
node on the tree will have at most two children because
the tree splits two or three dimensional space on only one
axis at a time, and rotates through the

Figure 2: Oct-tree axis-aligned scene subdivision. Scene from the
MUPPETS system, courtesy of A. Phelps and D. Parks. Copyright ©
Rochester Institute of Technology 2002-2003.

axis to produce trees similar to the quad- and oct-trees
discussed previously. This has the advantage that the
BSP tree can be resorted from nearly any viewpoint, and
this technique is commonly used for camera clipping and
frustum culling. Note also that BSP trees do not
necessarily need to divide the scene along the world axis,
and frequently employ a polygon-aligned scheme that
differs significantly from the axis -aligned methodologies
previously discussed [2].

1.3 STORING SCENE GEOMETRY IN TREE-
NODES FOR QUICK RETRIEVAL OF
NEIGHBORS

In some schemes, objects are allowed to register
themselves at different levels of the hierarchy for later
retrieval; in other schemes an object may simply be
registered at multiple end-nodes of the tree. This presents
certain problems, particularly in trees that register objects
at different levels within the hierarchy, because an object
near the center of the scene or that overlaps one of the
major axis is checked against the whole scene for
collision detection. Ulrich presented a unique solution to
this problem, that of loose octrees [3], which use
bounding squares 1.5 times larger than half the divisional
space and can thus place objects on the major axis
squarely within a bounding region.

The authors suggest a much less rigorous implementation
than that of a formal tree-based scheme, that of a pre -

 A B

 C D

root

A TYPICAL QUAD-TREE SUBDIVISION

 E G

 F H

 A B C D

 E F G H
Screen Space Subdivision

A triangle is registered in nodes F and H in the associated quad-tree.
In other schemes, the triangle would register at node B, and thus
check E,F,G, and H as its search space. This is coreectalbe by the
implementation of loose-tree partitioning, if desired.

A TYPICAL OCT -TREE SUBDIVISION

Figure 3: A Predefined Bin System for Spatial Part itioning.

defined subdivision that needs only a resorting of the
objects into the pre-defined partitions. We refer to this
methodology as ‘binning’ (see figure 3). Using a binning
system, the screen is subdivided using AABB
methodology into however many appropriate bins, such
that the bins are larger, but not significantly larger, than
the objects being tested for intersection. (The weakness of
such a binning system is that it is relative to the
application and requires objects to be roughly ‘of a size’.
This is appropriate for the authors’ use in a game engine,
but it should be noted this is not a fully generalized
solution.)

A given object may register itself with several such bins,
and should register itself with any bin in which it
overlaps. This can be accomplished through a very coarse
radius sweep, or by a simple point-in-bin style check for
each point of an encasing poly-volume . (An encasing
poly-volume again relies on the fact that objects are of a
size such that they do not span significant number of bins,
as overlap is checked but containment is not.) The bins
themselves are stored as linear arrays, containing pointers
to the objects that are present in the bin on a given frame.

In order to look for collision between objects, an object
will first look and see which bins it is currently present in,
and then construct a ‘possible hit list’ of all the other
objects that are contained within those same bins. This
has the advantage of removing large areas of screen space
before the more expensive intersection calculations, but
without the overhead of re-partitioning the scene on each
frame. Note that this methodology is not as refined as a
more complete tree structure, and can introduce
significant overhead if a large number of objects are
significantly larger than the bin size selected.

Once a suitable level of subdivision has been obtained
(generally when the area found is close in size to the
object being checked for collision with other artifacts) it
is relatively easy, through tree traversal, to obtain a list of
objects that are near another object and might possibly
collide. For any given object, the object will be registered
with a particular node (or nodes) within the tree: by
looking at those nodes it is possible to obtain a list of all
other objects registered with those nodes, thus excluding
most of the search space before any detailed algorithm is

called. This is most commonly done for polygons in a
three-dimensional scene with regard to clipping and
culling, but can also have a large impact in two-
dimensional spaces for collision detection, particularly
when some later checks for accurate collision are
exceedingly expensive, as is the case with
intersects() implementation in Lingo (when used
with the Matte ink type to produce sub-rectangular
accuracy).

1.4 MOVEMENT AND TREE BALANCE

The original use of the tree-based structure, and one that
is still common today in computer graphics, is scene /
entity or scene / player collision detection. With regard to
the general scene, many schemes load the triangles of the
level geometry into the scene once, at load time, and then
use the tree to produce accurate triangle for either
collision detection or rendering purposes. This works
relatively easily for scene elements that are largely static,
such as the ground in an outdoor environment or the walls
and stationary furniture of an office building. (Indeed the
use of the quad-tree with regard to landscapes is
particularly effective, and can even allow the use of a
landscape larger than what can be held in the physical
memory of the machine [4]). This technique is less
successful, however, on scene elements that are in
motion, and least successful on elements that are
constantly in motion. This technique is also catastrophic
on meshes that are generated procedurally on the fly,
which would require re -partitioning on the fly as well [5].

To effectively use such highly mobile elements, it is
generally the case that such objects are removed from the
tree and re-added on a per-frame or per-update basis.
Generally speaking, however, it is not necessary to re-sort
all the triangles into individual bins, but rather to only
assign the list of triangles in the object the various bins
that the bounding volume of the shape overlaps.

In the system described here, for example, each element is
assigned its own ploy-volume in two-dimensional space.
Any bin that the poly-volume overlaps is assigned a
reference to the particular object in question, which would
be checked against any other object in the bin, either
stationary or mobile. It is important to note that all
assignment of bins and list generation should be
performed either before all updates transforms to the
object hierarchy, or else after all transforms. Odd
collision logic can result if objects are added and then
checked before others are added or updated, typically
resulting in objects that pass through one another if they
only overlap for a single update.

The same techniques hold true for more complicated
meshes and geometry in 2- and 3-dimensional space.
Regardless of implementation, any objects that move
throughout the scene have the opportunity to change
which area of spatial subdivision in which it would fall.
This leads to the final issue with regard to moving objects
and collision detection: the so called “quick gun”
symptom. If an object is moving at sufficient speed, it is

 A B C D

 E F G H

 I J K L

 M N O P

A triangle against
a pre-defined bin
structure.
Triangle would be
contained in cells
F,G,J and K, and
any objects in
surrounding cells
would not be
checked.

possible that on one frame the objects bounding volume is
before or ahead of some object with which it will collide,
and on the next frame it has already passed the object
with which it might collide. This is commonly seen with
paper-thin walls in game environments with characters
that can run towards a wall and ‘pop-through’ it, or who
can fall from great distances and fall through the ground
plane. One solution to this is to scale the bounding
volume of the object by the directional velocity of the
object.

1.5 REPRESENTATION OF OBJECTS BY
SIMPLIFIED BOUNDING SHAPE

The previous section made much use of the term
‘bounding volume’ as a way of quickly describing the
area in space that a shape occupies, in either two or three
dimensions. In fact, there are several such schemes for
producing these volumes [6], all of which have their uses
in various places within a collision detection scheme.
They are presented here in no particular order other than
perhaps conceptual ease, but this should in no way imply
that implementation is more difficult in later strategies
relative to earlier.

1.5.1 Axis-Aligned Bounding Box (AABB)

The Axis -Aligned Bounding Box (AABB) is probably the
easiest to envision. In a two-dimensional space, this
represents a rectangular space whose sides are parallel
with the x- and y-axis of the world-space. This same idea
is extensible to cubic divisions of a three dimensional
world -space with the third dimension of the cube running
parallel to the z-axis. This is the scheme most commonly
used for quad-tree and oct-tree generation and is the
scheme used in the ‘binning’ system described here.
Several optimizations have been made in the process of
detecting collisions between AABBs, including the
popular method proposed by Woo [7], and the Slabs
Method [8].

1.5.2 Object Aligned Bounding Box

A complication introduced into the AABB scheme is the
rotation of an object. This can be solved by re-generating
a new AABB based on the transformed points of the
original mesh, but it is just as easy to assign a discrete
bounding box or cube to the object in question and allow
it to inherit the rotations that are applied to the parent.
This new bounding volume is then an Object Aligned
Bounding Box (OABB).

Common uses of OABB are for objects that are have
considerable length along one axis relative to another, and
that rotate. Such an object would, at most rotations,
provide a profile that would not directly correspond well
to any AABB, and thus a second level is needed. Because
of the ease of AABB collision tests, many collision
detection methods for OABB schemes involve rotating
one or the other of two OABB into an axis -aligned space
before checking for collision.

1.5.3 Bounding Circle and S phere

Another type of bounding volume commonly used is a
bounding circle. This is incredibly easy to calculate, as it
merely involves taking the pixel of the sprite farthest from
the center and using its distance vector as the radius.
Collision detection can be solved through basic
application of the Pythagorean Theorem [9], with
optimizations to avoid the overhead of calculating the
square root. Bounding circles can also offer a much
better fit to shapes that are roughly circular in nature,
avoiding the common “corner” problem of rectangles
producing a positive result in collision detection
algorithms despite the visual shapes showing no overlap.

This type of bounding volume can be extrapolated to 3D
as a simple sphere, which tends to work well for objects
that are roundly symmetrical, either spheres in their own-
right or things that are almost so. The generation of the
sphere can be done algorithmically, as presented by Ritter
[10], Welzl [11], and Eberly [12]. Director uses a sphere
as the default bounding volume of all objects within the
Shockwave-3D® environment, and any collision
detections are measured in sphere-sphere collision space.
Using a bounding sphere (or a stretched ellipse) works
very well and is relatively easy to calculate collision. It is
of limited utility, however, in objects that are either more
box-like (which is typically the case in wall oriented level
geometry), or objects that have significant length along
one axis relative to another as length along any axis will
by definition increase the radius of the overall sphere,
leaving bound empty space around much of the object.

1.5.4 Bounding Mesh

Another solution to the bounding problem is to use a low-
res version of the object in question. This is often of
lesser performance than the other methods, but with much
greater realism in its results. In models constructed of
triangles, this refers to the practice of storing a high-res
version of the mesh for rendering, but a very low poly-
count copy of the mesh for collision detection, and then
adding the low-res mesh triangle by triangle to the tree as
it moves around the scene. While significantly more
computationally intensive than the other methods
presented here, the low-poly armatures can be tweaked to
offer a very realistic approximation of the higher
resolution mesh, and thus offer the best visual illusion.

This idea is extensible to a ‘bounding image’ in which the
pixel size is increased in a coarse approximation of the
sprite, and then general purpose image-image collision is
employed (see 1.6 for details). Such a scheme would be
less precise at the pixel level in the same way that a
bounding mesh is less precise at the triangular mesh level,
but with similar improvements in performance.

1.5.5 Discrete Oriented Polytope

The final common bounding volume is perhaps the least
easily visualized, the Discrete Oriented Polytope or K-
DOP (where K is the number of projected faces). To

produce a K-DOP, the normals of the slab faces are
projected out to produce K- faces of the bounding
volume. A mo re complete discussion of K-DOP
bounding volumes is presented by Akenine-Möller and
Haines [6], and is beyond the scope of the simple
detection schemes presented here. The system described
here is interesting in that it produces bounding shapes
very similar to those produces by K-DOP bounding
algorithms, although manually rather than
algorithmically.

1.5.6 Bounding Volume Collision Detection

Regardless of how the bounding volume is implemented,
it is nearly always cheaper to check for the collision of the
bounding volumes of two objects than the actual
triangular mesh or pixel image of the underlying object.
In the case of any two bounding volumes that are both
disjoint and convex, this is generally accomplished
through the Separating Axis Theorem (SAT) [16]. SAT is
generally employed in AABB, OOBB, and K-DOP
bounding tests for this purpose. It should also be restated
that no bounding volume will offer absolutely perfect
precision relative to the underlying mesh.

1.6 IMAGE BASED COLLISION DETECTION

Image or sprite-based collision detection typically comes
in two varieties, one of which is highly optimized, and
one of which is so slow as to be almost unusable in a
scene requiring either great complexity and/or real-time
use. The first methodology is to simply use the
rectangular bounding volume of the image, and determine
if any of the segments that form the rectangle of the first
image intersect any of the segments of the second. In
essence this is rectangle-rectangle collision detection [13],
provided that the images are not rotated (rotated images
generally employ a methodology in which they are
transcribed into non-rotated recliner volumes). This can
be done using a combination of line-line intersection and
point-in-rectangle strategies that are relatively triv ial, and
therefore quick. This is in fact the default methodology
used by Macromedia Director for the sprite.
intersects() function.

The second methodology employed for use in image
based collision detection is the use of per-pixel checks on
the images themselves to determine overlap. This can be
done using a simple matte color (as is the case in
Director) or using the alpha value present in images that
contain an alpha channel (1-bit generally for GIF images,
and up to 16-bits in a 48-bit PNG, the general case being
4 or 8 bits for 16-bit or 32-bit graphics, respectively).
The unfortunate side-effect of this type of operation is the
absolutely massive number of discrete operations. In
theory, in order to perform a pixel accurate image test it
would be necessary to check (in the worst case, a non-
collision) every single pixel of one of the images against
the other. In common practice, the area of overlap
between the images is determined using Boolean
rectangular subtraction (with many optimizations of

similar math) and then the pixels in the overlapping area
compared for overlap. Even with such optimizations,
however, the number of operations is exponentially larger
than other, less accurate, bounding tests, and should be
used as a last resort. That Director® affords this
functionality with ease does not make it the most efficient
approach, nor is it often necessary as necessary as is
originally thought.

2 POLYGONAL ARMATURES FOR
APPROXIMATE VISUAL COLLISION

Another option for the detailed collision detection is a
polygon armature, which is presented here as an
alternative to image-based collision detection described in
1.6. By representing the collision area as line segments
we can approximate the shape of the object while
providing a much more accurate collision detection than a
simplified bounding shape. This is similar to a K-DOP
bounding volume (see 1.5.5) but without the reliance on
normal project. This allows the armatire to be of virtually
any size or shape, a flexibility that has been exploited to
maximum advantage by several game designers in
preparing the hit-box of enemies and player controlled
vehichles. Once the armature shape is defined, we can
use a simple line intersection algorithm to determine
whether one armature hits another.

2.1 VISUAL APPEAL

One of the key advantages that a polygonal armature
offers over a simple bounding volume is the ability to
better match the shape of the object in question. An avatar
that was significantly longer than it's width would have a
bounding sphere that did not accurately describe it's shape
(as noted in 1.5.3). A polygon armature, however, can
represent these shames with relative ease, given enough
points within the polygon to define a coarse outline of the
overall avatar. Visually this is very effective in many
genres of games where exact, pixel-level, collision
detection is not needed. For example, in most shooters the
hit-box for the player’s ship is significantly smaller than
the sprite that represents the ship on-screen. This is a
common technique that allows for more frantic gameplay
while still mantaining nice visuals.

An example of how this would look is presented in figure
4. In this case the central area of the ship is defined as a
hit area but it doesn't cover the whole ship. This provides
some nice overlap of object in the game as well as
reducing "edge kills" that can feel leave the player feeling
cheated. In situations that require more precise collision,
the definition of the bounding polygon can be increased
and reworked to more closely match the sillouette of the
underlying sprite. This is fully adaptable to 3D models as
well as sprites, provided that the armature can be
projected onto the viewing plane in such a way that it still
representes the edge of the model. In situations where the
camera employes orthographic projection this is a simple

scale: a more complex projection would be required for
perspective projection camera support.

Figure 4. A polygon armature for detailed collision detection.

2.2 COLLISION DETECTION THROUGH LINE
SEGMENT INTERSECTION

The hit region from the example in Figure 4 is defined in
memory by 5 vector points. These points are translated
and rotated as necessary on every frame to stay in sync
with the visual representation of our character. Their
location can then be used, on a per point basis, to place
the object into the appropriate bins (see discussion of the
‘binning system in 1.3). Once a possible collision is
detected, a simple iteration through the points in each
object, in sequence, produces discrete line segments
describing the polygon. These line segments are then
tested for overlap, and if any overlaps are found the object
are said to collide.

The equation that describes line segment intersection is an
interesting one (see Figure 5), and one that presents many
subtle optimizations. The equation describes two line
segments, denoted as A-B and C-D, in which A,B,C, and
D represent points in Cartesian coordinate space (x,y with
positive x moving to the right and positive y moving
towards the top). These values can be modified as
necessary to account for the inversion of screen space
and/or other coordinate systems as desired.

Figure 5: Line segment intersection where the point of intersection is not
needed. If 0<=r<=1 and 0<=s<=1 then the segments intersect .

First, it should be noted that the denominators of both
equations are identical, and thus can be computed only
once for both equations. Additionally, if the denominator
equals zero, then the lines are parallel and do not formally
intersect, and the any check for collision detection can
return false. (This runs the risk of the lines in fact being
co-incident, but in such cases another two segments of the
polygon will return the overlap). Antonio [14] presents
several optimizations to any implementation of this
algorithm, including the denominator check as well as
several other strategies to quickly throw out line segment
intersection without computing the remainder of the
calculations.

It should also be noted that the equation above checks
solely for intersection, it does not pertain to the issue of
one bounding shape existing completely inside another.
A complete bounding check would need to also account
for point-in-poly collision detection, thus determining if
one larger object completely contained another. Haines
[15] offers several strategies for this, as does Eberly [16].
The authors have managed to avoid this scenario by again
using objects that are roughly similar in size specific to
the game environment in which the algorithms are
implemented: it is recommended that any generic
implementation also allow for containment checks in
addition to intersection.

2.3 PROGRAMMATIC IMPLEMENTATION

In the course of implementing these algorithms, several
optimization techniques were used to produce a fast,
reliable collision detection scheme. First, screen space
was divided into discrete bins as previously discussed.
Next, each object was assigned a list of untransformed
vertices that comprised the bounding shape for the
individual models. These vertices are stored as vectors
describing the position of the point relative to the center
of the model (i.e. the model center is equal to point(0,0) in
Cartesian coordinate space). The vertices were defined in
3D Studio Max® at author time directly on top of the
models themselves. These points were then exported as
custom user-data through the Shockwave 3D® exporter
and read into Lingo lists using the do command to
convert from the user-data string to a list.

After the points are obtained, they go through a process
every frame whereby they are rotated to match the
rotation of the model, and moved to match the position of
the model in screen coordinate space. This presented a
significant speed problem because the rotation of the
points introduced several sin and cosine operations (see
Figure 6), each of which is exceedingly slow. To
counteract this, a table of pre-determined sin/cosine
values is computed at startup for each integer in the range
of 1-360, where zero is treated as 360 degrees (see Figure
7). Floating point angles obtained from the Shockwave
3D® environment are rounded to the nearest integer,
which because it is reexamined each frame does not
introduce significant rounding error.

r
a y c y–() dx c x–() a x cx–() dy c y–()–

b x a x–() dy c y–() by a y–() dx c x–()–
---=

s
a y cy–() bx ax–() ax c x–() by a y–()–

b x ax–() dy cy–() by a y–() dx c x–()–
---=

 IF 0<= r <=1 AND 0 <= s <=1 THEN INTERSECT

Figure 6: Equation describing rotation of a two-dimensional point
around the origin in Cartesian space where [x’ y’] describes the position
of [x y].

Figure 7: Code listing for creation of a sin/cos startup table, called from
the Startmovie event, and ghRotateVectorShape global
handler that uses the pre-generated table.

After the points are rotated and transformed to their
screen coordinates, each point is checked to see which bin
it is in, and a reference to the object is placed in each bin
in which a point falls. This process is repeated for each of
three types of entities: enemy ships, enemy bullets, and
player bullets, each of which is stored in its own list
inside the bin.

The player’s ship then begins collision detection by
getting a list of which enemy ships and which enemy
bullets are present in the bins that the player ship
overlaps. The player ship then checks its own bounding
shape against the bounding shape for these objects using
the code in Figure 8.

Figure 8: Lingo code implementation of poly-poly collision detection.

x ′ y′ x y

θcos θsin
θsin– θcos

×=

--check for collision between two poly objects
on ghCheckForCollision(a_oPolyA, a_oPolyB)
 bIntersects = void --eventual result

 iPolyACount =
a_oPolyA.p_aTransformedVertexList.count
 iPolyBCount =
a_oPolyB.p_aTransformedVertexList.count

 --lets try this first with line
intersection...
 repeat with iCounter1 = 1 to iPolyACount
 repeat with iCounter2 = 1 to iPolyBCount
 bIntersects = ghCheckLineIntersection(\
 a_oPolyA.p_aTransformedVertexList[\
 ghGetNextIndex(iCounter1, \
 iPolyACount)],\
 a_oPolyA.p_aTransformedVertexList[\
 ghGetNextIndex(iCounter1 + 1, \
 iPolyACount)], \
 a_oPolyB.p_aTransformedVertexList[\
 ghGetNextIndex(iCounter2, \
 iPolyBCount)],\
 a_oPolyB.p_aTransformedVertexList[\
 ghGetNextIndex(iCounter2 + 1, \
 iPolyBCount)])

 if bIntersects then return TRUE
 end repeat
 end repeat

--bounding checks to stay within list length
on ghGetNextIndex a_iIndex, a_aListCount
 if a_iIndex > a_aListCount then
 a_iIndex = 1
 else
 a_iIndex = a_iIndex end if
 return a_iIndex

end ghGetNextIndex

--takes 4 points describing two line segments
on ghCheckLineIntersection a_ptA, a_ptB, a_ptC,
a_ptD

 f =((a_ptB[1]-a_ptA[1])*(a_ptD[3]-a_ptC[3])-\
 (a_ptB[3]-a_ptA[3])*(a_ptD[1]-a_ptC[1]))

 --parallel or co-incident
 if f = 0 then return FALSE

 d=((a_ptA[3]-a_ptC[3])*(a_ptD[1]-a_ptC[1])-\
 (a_ptA[1]-a_ptC[1])*(a_ptD[3]-a_ptC[3]))

 if(f>0) then --/* alpha tests*/ if(d<0 or d>f) then
 return FALSE
 end if
 else
 if(d>0 or d<f) then
 return FALSE
 end if
 end if

 e=((a_ptA[3]-a_ptC[3])*(a_ptB[1]-a_ptA[1])-\
 (a_ptA[1]-a_ptC[1])*(a_ptB[3]-a_ptA[3]))

 if(f>0) then --/* beta tests*/
 if(e<0 or e>f) then
 return FALSE
 end if
 else
 if(e>0 or e<f) then
 return FALSE
 end if end if

--generate sin / cos lookup tables.
 D3D_WORLD[#g_aSin] = []
 D3D_WORLD[#g_aCos] = []
 repeat with iCounter = 1 to 360
 D3D_WORLD[#g_aSin][iCounter] = \

 sin(iCounter * D3D_WORLD[#g_fDegrad])
 D3D_WORLD[#g_aCos][iCounter] = \
 cos(iCounter * D3D_WORLD[#g_fDegrad])
 end repeat

on ghRotateVectorShape(a_aVectorShape,
 a_iDegrees)

 aTempVectorShape = a_aVectorShape.duplicate()

 aTransformedVectorShape = []
 repeat with iCounter = 1 to \
 aTempVectorShape.count

vCurVec = aTempVectorShape[iCounter]

fX=vCurVec[1]*D3D_WORLD[#g_aCos][a_iDegrees]-\
vCurVec[3]*D3D_WORLD[#g_aSin][a_iDegrees]

fZ=vCurVec[1]*D3D_WORLD[#g_aSin][a_iDegrees]+\
vCurVec[3]*D3D_WORLD[#g_aCos][a_iDegrees]

aTransformedVectorShape[iCounter] = \
 vector(fX, 0, fZ)
 end repeat

In the code presented above, a poly object has as a
property its transformed points as a list. The global
functions loop through the points of the first poly creating
line segments A-B, B-C, C-D, etc and comparing these
segments to each segment constructed from the second
poly. The ghCheckForCollision and the
ghGetNextIndex handlers are used as wrappers to
produce the correct line segments for collision checks, the
meat of collision detection is contained in the
ghCheckLineIntersection handler, which is an
implementation of the mathematical equation presented in
Figure 5, with some of the optimizations presented by
Antonio [14] implemented in Lingo. As soon as a
collision is detected, the function returns true and the
game logic can take appropriate action for intersection.
After the player is checked for collision against the enemy
ships and bullets, the enemies are checked against the
player’s weapon objects. A screenshot of only ship-ship
collision detection using this methodology is presented in
Figure 9.

Figure 9: Ship-Ship collision detection using polygonal armatures in a
game engine. Image taken from the Broadsword project, copyright © A.
Phelps and A. Cloutier, Rochester Institute of Technology 2003.

3 CONCLUSIONS
Multi-tiered approaches that incorporate trees, data
simplification, and mathematical tests as opposed to pixel
based imaging are significantly faster than image-image
comparisons. In addition, such measures can be
extrapolated into environments in which image-image
collision is not readily available, such as a three-
dimensional environment viewed through orthographic
projection. Additionally, when used in game
environments, the use of polygon armatures for collision
detection is especially advantageous as it offers designers

and play-testers control over the size of the hit-box on
various elements within the game as a tunable feature.
Future work would likely incorporate the use of other
bounding shapes and checks such as spheres and discrete
triangles to further minimize the number of checks and
calls performed on a per-frame basis, and to further push
the expensive collision-detection methodologies further
down the chain, thus allowing for faster frame rates and
more engine cycles to devote to other tasks.

References

[1] Akenine-Möller, and Eric Haines. (2002) Real-Time
Rendering. Second Edition. Natick, Massacheusettes,
A.K. Peters. pp. 345-357.

[2] Watt, Alan and Fabio Policarpo. (2003) 3D Games:
Animation and Advanced Real-Time Rendering Vol II.
Harlow, England, Addison-Wesley. pp 37-45.

[3] Ulrich, Thatcher. (2000) “Loose Octrees," in Mark
DeLoura, ed., Game Programming Gems. Rockland
Massacheusettes, Charles River Media. pp 444-453.

[4] Davis, D, W Ribarsky, T Y Yang, N Faust and S Ho.
(1999) Real-Time Visualization of Scalably Large
Collections of Heterogeneous Objects. Proceedings of
IEEE Visualization 99. pp 437-440.

[5] O’Neil, Sean. (2003) “Procedural Worlds: Avoiding
the Data Explosion" in Thor Alexander, ed. “Massively
Multiplayer Game Development". Rockland Massacheu-
settes, Charles River Media. pp 314–331.

[6] Akenine-Möller, and Eric Haines. (2002) Real-Time
Rendering. Second Edition. Natick, Massacheusettes,
A.K. Peters. pp. 557-563.

[7] Woo, Andrew. (1990) “Fast Ray-Box Intersection"
in Andrew Glassner, ed. “Graphics Gems". Academic
Press. pp 395-396. http://www.graphicsgems.org/

[8] Akenine-Möller, and Eric Haines. (2002) Real-Time
Rendering. Second Edition. Natick, Massacheusettes,
A.K. Peters. pp. 572-575.

[9] Mulholland, Andrew and Glenn Murphy. (2003)
“Java 1.4 Game Programming " Plano, Texas,
Wordware Publishing Inc.. pp 402-406.

[10] Ritter, Jack. (1990) “An Efficient Bounding Sphere "
in Andrew Glassner, ed. “Graphics Gems". Academic
Press. pp 301-303. http://www.graphicsgems.org/

[11] Welzl, Emo. (1991) “Smallest Enclosing Discs
(Balls and Ellipsoids)" in H. Maurer, ed. “New Results
and New Trends in Computer Science". LNCS 555.

[12] Eberly, David. (2000) 3D Game Engine Design: A
Practical Approach to Real-Time Computer Graphics.
San Francisco, Morgan Kauffman Publishers, Inc.

[13] Gomez, Miguel. (2003) “An Axis Aligned Bounding
Box (AABB) Sweep Test“. Game Developer Magazine /
Gamasutra Network. October 18th, 1999. Online:
http://www.gamasutra.com/features/19991018/Gomez_3.
htm. Cited January 19th, 2003.

 [14] Antonio, Franklin. (1992) "Faster Line Segment
Intersection" in David Kird, ed. "Graphics Gems III".
Academic Press, pp. 199-202. Source code imple-
mentation available through the ACM: http://
www.acm.org/pubs/tog/GraphicsGems/gemsiii/insectc.c

[15] Haines, Eric. (1994) "Point in Polygon Strategies"
Graphics Gems IV, ed. Paul Heckbert, Academic Press, p.
24-46.

[16] Eberly, David H. and Philip J. Schneider. (2002)
"Geometric Tools for Computer Graphics" San Francisco,
Morgan Kauffman Publishers. pp 265-284.

