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Abstract 
 

Collision detection is a technique used in several 
areas related to computer graphics.  This paper 
focuses on collision detection as it  relates to 
sprite-based engines, or more precisely engines 
that incorporate the use of non-geometric shapes 
in a two-dimensional view.  The theories 
presented here are applicable to projects 
produced in Macromedia Director® using the 
built-in “sprite-based” engine, as well as 
“Imaging Lingo” and Shockwave-3D® 
environments (the last of which can operate as a 
2D engine when the camera for the scene 
employs the use of orthographic rather than 
perspective projection).  Of particular interest is 
the focus on mu lti-tiered approaches to collision 
detection, which is especially critical in the 
Director / Lingo environment due to the fact that 
Lingo is an interpreted language, and performs 
like one.  Several theories central to computer 
graphics and collision detection are briefly 
discussed and dissected, with appropriate 
references to more complete explanations 
provided as appropriate.  A final implementation 
of a system using polygon-armatures is then 
shown as it relates to the development of the 
authors’ 3D Game Engine.  The code samples 
used in this paper are available here. 

1 MULTI-TIERED COLLISION 
DETECTION 

1.1 RELATIVE COST AND THE CASE FOR 
MULTIPLE SIMULTANEOUS STRATEGIES  

In any discussion of methodologies for collision detection 
it should be noted that no single method is likely best for 
all situations.  It should also be relatively clear that 
methods will vary with regard to their ‘cost’ – meaning 
that each will have associated with it a certain level of 

computational complexity relative to the level of accuracy 
in detecting collision. Generally speaking, the more 
precise the accuracy of a given methodology, the more 
computationally intensive the calculation, and the larger 
the drain on the overall program.  This is especially true 
of a classic game engine, in which collision detection is 
often employed every frame, or at the very least each 
cycle that polls for user input (depending on the game 
logic for the particular situation).   

Given that each methodology has a cost that can be 
determined either through calculation, programmatic 
implementation, or a combination of the two, and that this 
cost varies somewhat proportionally to the speed of the 
detection algorithm, it should come as no surprise that a 
common practice in computer graphics is to employ 
several algorithms at once in a given engine, ranked in 
order of their cost from lowest to highest.  A given pass 
for collision detection will then begin by checking all 
registered nodes using very quick, but simplistic, means 
and if intersection is not found will exit at this stage.  If 
intersection is returned by the course methodology, then a 
more refined test will be employed with greater accuracy 
to determine if in fact the two objects that previously 
returned intersection do in fact intersect.   This can be 
repeated a number of times until the overall system 
exhibits the visual accuracy desired.  It is important to 
note, however, that the test at each stage must return a 
value indicating intersection if it is at all possible that the 
operands intersect as a failed test at any stage will thus 
invalidate any test further down the chain.  

1.2 TREES AND SPATIAL PARTITIONING  

 

A first optimization common to collision detection 
schemes is to check only those entities that are nearest 
each other, relative to some spatial partitioning system.  
In a simple ‘Space Invaders’ type game, for example, it is 
relatively pointless to check and see whether each of the 
Invaders has collided with the player’s ship at the bottom 
of the screen.  Only those Invaders that have successfully 
reached the lower portion of the screen have even a 

http://www.macromedia.com/devnet/mx/director/articles/collision_detection/collision_lingo.txt


remote chance of intersecting with the player’s ship, and 
to check each of the Invaders on the screen (or worse yet 
those waiting in the off-screen pool) would be incredibly 
wasteful. 

What is needed, instead, is a way to know, before 
employing a more complex collision detection method-
ology, which sprites or objects it makes sense to apply 
that future test against.  This is commonly done use a tree-
based structure, which is representative of a spatial 
partitioning of the game space in two or three dimensions. 

Akenine-Möller and Haines[1] give a solid explanation of 
several different types of trees, the most easily envisioned 
of which is a tree that relies on axis -aligned partitioning 
units, and which are based on tree structures commonly 
referred to as ‘quad-trees’ or ‘oct-trees’ in two or three 
dimensions, respectively.  In the case of the quad-tree, 
screen space is split once horizontally, and once 
vertically, dividing the space into four quadrants, most 
often of equal size (see Figure 2, and for an imple-
mentation of the same technique in three dimensions refer 
to figure 3).  For each element to be involved in collision 
detection, that element is added to any tree-node in which 
it overlaps.  This process is repeated such that any 
available bin (which on the tree can be thought of as a 
node) can be further subdivided into four more quadrants 
(again refer to Figure 1), with the objects being reassigned 
to which node they now belong to, or in tree-based 
parlance “pushed down to the lowest possible leaf node”.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Quad-tree axis-aligned scene subdivision, based in part upon 
Figure 9.4 presented by Akenine-Möller and Haines[1].   

 

The second variety of tree commonly found in computer 
graphics for the purpose of scene subdivision is the 
Binary Space Partitioning (BSP) Tree.  BSP trees can 
employ the same methodologies used above, but each 
node on the tree will have at most two children because 
the tree splits two or three dimensional space on only one 
axis at a time, and rotates through the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Oct-tree axis-aligned scene subdivision.  Scene from the 
MUPPETS system, courtesy of A. Phelps and D. Parks. Copyright © 
Rochester Institute of Technology 2002-2003. 

 

axis to produce trees similar to the quad- and oct-trees 
discussed previously.  This has the advantage that the 
BSP tree can be resorted from nearly any viewpoint,   and 
this technique is commonly used for camera clipping and 
frustum culling. Note also that BSP trees do not 
necessarily need to divide the scene along the world axis, 
and frequently employ a polygon-aligned scheme that 
differs significantly from the axis -aligned methodologies 
previously discussed [2]. 

 

1.3 STORING SCENE GEOMETRY IN TREE-
NODES FOR QUICK RETRIEVAL OF 
NEIGHBORS 

 

In some schemes, objects are allowed to register 
themselves at different levels of the hierarchy for later 
retrieval; in other schemes an object may simply be 
registered at multiple end-nodes of the tree.  This presents 
certain problems, particularly in trees that register objects 
at different levels within the hierarchy, because an object 
near the center of the scene or that overlaps one of the 
major axis is checked against the whole scene for 
collision detection.  Ulrich presented a unique solution to 
this problem, that of loose octrees [3], which use 
bounding squares 1.5 times larger than half the divisional 
space and can thus place objects on the major axis 
squarely within a bounding region. 

The authors suggest a much less rigorous implementation 
than that of a formal tree-based scheme, that of a pre - 

  

 

      A               B 
 

       

     C              D 

root 

  

A TYPICAL QUAD-TREE SUBDIVISION 

                         E        G 

 

                         F        H 

                                                  A        B        C        D 
      

                                                 E         F         G        H 
Screen Space Subdivision 

 

A triangle is registered in nodes F and H in the associated quad-tree.  
In other schemes, the triangle would register at node B, and thus 
check E,F,G, and H as its search space.  This is coreectalbe by the 
implementation of loose-tree partitioning, if desired. 
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Figure 3: A Predefined Bin System for Spatial Part itioning. 

 

defined subdivision that needs only a resorting of the 
objects into the pre-defined partitions.  We refer to this 
methodology as ‘binning’ (see figure 3).  Using a binning 
system, the screen is subdivided using AABB 
methodology into however many appropriate bins, such 
that the bins are larger, but not significantly larger, than 
the objects being tested for intersection. (The weakness of 
such a binning system is that it is relative to the 
application and requires objects to be roughly ‘of a size’.  
This is appropriate for the authors’ use in a game engine, 
but it should be noted this is not a fully generalized 
solution.)   

A given object may register itself with several such bins, 
and should register itself with any bin in which it 
overlaps.  This can be accomplished through a very coarse 
radius sweep, or by a simple point-in-bin style check for 
each point of an encasing poly-volume .  (An encasing 
poly-volume again relies on the fact that objects are of a 
size such that they do not span significant number of bins, 
as overlap is checked but containment  is not.)  The bins 
themselves are stored as linear arrays, containing pointers 
to the objects that are present in the bin on a given frame.   

In order to look for collision between objects, an object 
will first look and see which bins it is currently present in, 
and then construct a ‘possible hit list’ of all the other 
objects that are contained within those same bins.  This 
has the advantage of removing large areas of screen space 
before the more expensive intersection calculations, but 
without the overhead of re-partitioning the scene on each 
frame.  Note that this methodology is not as refined as a 
more complete tree structure, and can introduce 
significant overhead if a large number of objects are 
significantly larger than the bin size selected. 

Once a suitable level of subdivision has been obtained 
(generally when the area found is close in size to the 
object being checked for collision with other artifacts) it 
is relatively easy, through tree traversal, to obtain a list of 
objects that are near another object and might possibly 
collide.  For any given object, the object will be registered 
with a particular node (or nodes) within the tree: by 
looking at those nodes it is possible to obtain a list of all 
other objects registered with those nodes, thus excluding 
most of the search space before any detailed algorithm is 

called.  This is most commonly done for polygons in a 
three-dimensional scene with regard to clipping and 
culling, but can also have a large impact in two-
dimensional spaces for collision detection, particularly 
when some later checks for accurate collision are 
exceedingly expensive, as is the case with 
intersects() implementation in Lingo (when used 
with the Matte ink type to produce sub-rectangular 
accuracy). 

1.4 MOVEMENT AND TREE BALANCE 

The original use of the tree-based structure, and one that 
is still common today in computer graphics, is scene / 
entity or scene / player collision detection.  With regard to 
the general scene, many schemes load the triangles of the 
level geometry into the scene once, at load time, and then 
use the tree to produce accurate triangle for either 
collision detection or rendering purposes.  This works 
relatively easily for scene elements that are largely static, 
such as the ground in an outdoor environment or the walls 
and stationary furniture of an office building.  (Indeed the 
use of the quad-tree with regard to landscapes is 
particularly effective, and can even allow the use of a 
landscape larger than what can be held in the physical 
memory of the machine [4]). This technique is less 
successful, however, on scene elements that are in 
motion, and least successful on elements that are 
constantly in motion.  This technique is also catastrophic 
on meshes that are generated procedurally on the fly, 
which would require re -partitioning on the fly as well [5]. 

To effectively use such highly mobile elements, it is 
generally the case that such objects are removed from the 
tree and re-added on a per-frame or per-update basis.  
Generally speaking, however, it is not necessary to re-sort 
all the triangles into individual bins, but rather to only 
assign the list of triangles in the object the various bins 
that the bounding volume of the shape overlaps. 

In the system described here, for example, each element is 
assigned its own ploy-volume in two-dimensional space.  
Any bin that the poly-volume overlaps is assigned a 
reference to the particular object in question, which would 
be checked against any other object in the bin, either 
stationary or mobile.  It is important to note that all 
assignment of bins and list generation should be 
performed either before all updates transforms to the 
object hierarchy, or else after all transforms.  Odd 
collision logic can result if objects are added and then 
checked before others are added or updated, typically 
resulting in objects that pass through one another if they 
only overlap for a single update. 

The same techniques hold true for more complicated 
meshes and geometry in 2- and 3-dimensional space.  
Regardless of implementation, any objects that move 
throughout the scene have the opportunity to change 
which area of spatial subdivision in which it would fall.  
This leads to the final issue with regard to moving objects 
and collision detection: the so called “quick gun” 
symptom.  If an object is moving at sufficient speed, it is 
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possible that on one frame the objects bounding volume is 
before or ahead of some object with which it will collide, 
and on the next frame it has already passed the object 
with which it might collide.  This is commonly seen with 
paper-thin walls in game environments with characters 
that can run towards a wall and ‘pop-through’ it, or who 
can fall from great distances and fall through the ground 
plane.  One solution to this is to scale the bounding 
volume of the object by the directional velocity of the 
object.   

1.5 REPRESENTATION OF OBJECTS BY 
SIMPLIFIED BOUNDING SHAPE 

The previous section made much use of the term 
‘bounding volume’ as a way of quickly describing the 
area in space that a shape occupies, in either two or three 
dimensions.  In fact, there are several such schemes for 
producing these volumes [6], all of which have their uses 
in various places within a collision detection scheme.  
They are presented here in no particular order other than 
perhaps conceptual ease, but this should in no way imply 
that implementation is more difficult in later strategies 
relative to earlier. 

1.5.1 Axis-Aligned Bounding Box (AABB) 

The Axis -Aligned Bounding Box (AABB) is probably the 
easiest to envision.  In a two-dimensional space, this 
represents a rectangular space whose sides are parallel 
with the x- and y-axis of the world-space.  This same idea 
is extensible to cubic divisions of a three dimensional 
world -space with the third dimension of the cube running 
parallel to the z-axis.  This is the scheme most commonly 
used for quad-tree and oct-tree generation and is the 
scheme used in the ‘binning’ system described here.  
Several optimizations have been made in the process of 
detecting collisions between AABBs, including the 
popular method proposed by Woo [7], and the Slabs 
Method [8]. 

1.5.2 Object Aligned Bounding Box 

A complication introduced into the AABB scheme is the 
rotation of an object.  This can be solved by re-generating 
a new AABB based on the transformed points of the 
original mesh, but it is just as easy to assign a discrete 
bounding box or cube to the object in question and allow 
it to inherit the rotations that are applied to the parent.  
This new bounding volume is then an Object Aligned 
Bounding Box (OABB). 

Common uses of OABB are for objects that are have 
considerable length along one axis relative to another, and 
that rotate. Such an object would, at most rotations, 
provide a profile that would not directly correspond well 
to any AABB, and thus a second level is needed.  Because 
of the ease of AABB collision tests, many collision 
detection methods for OABB schemes involve rotating 
one or the other of two OABB into an axis -aligned space 
before checking for collision. 

1.5.3 Bounding Circle and S phere 

Another type of bounding volume commonly used is a 
bounding circle.  This is incredibly easy to calculate, as it 
merely involves taking the pixel of the sprite farthest from 
the center and using its distance vector as the radius.  
Collision detection can be solved through basic 
application of the Pythagorean Theorem [9], with 
optimizations to avoid the overhead of calculating the 
square root.  Bounding circles can also offer a much 
better fit to shapes that are roughly circular in nature, 
avoiding the common “corner” problem of rectangles 
producing a positive result in collision detection 
algorithms despite the visual shapes showing no overlap.  

This type of bounding volume  can be extrapolated to 3D  
as a simple sphere, which tends to work well for objects 
that are roundly symmetrical, either spheres in their own-
right or things that are almost so.  The generation of the 
sphere can be done algorithmically, as presented by Ritter 
[10], Welzl [11], and Eberly [12].  Director uses a sphere 
as the default bounding volume of all objects within the 
Shockwave-3D® environment, and any collision 
detections are measured in sphere-sphere collision space.  
Using a bounding sphere (or a stretched ellipse) works 
very well and is relatively easy to calculate collision.  It is 
of limited utility, however, in objects that are either more 
box-like (which is typically the case in wall oriented level 
geometry), or objects that have significant length along 
one axis relative to another as length along any axis will 
by definition increase the radius of the overall sphere, 
leaving bound empty space around much of the object. 

1.5.4 Bounding Mesh 

Another solution to the bounding problem is to use a low-
res version of the object in question.  This is often of 
lesser performance than the other methods, but with much 
greater realism in its results.  In models constructed of 
triangles, this refers to the practice of storing a high-res 
version of the mesh for rendering, but a very low poly-
count copy of the mesh for collision detection, and then 
adding the low-res mesh triangle by triangle to the tree as 
it moves around the scene.  While significantly more 
computationally intensive than the other methods 
presented here, the low-poly armatures can be tweaked to 
offer a very realistic approximation of the higher 
resolution mesh, and thus offer the best visual illusion. 

This idea is extensible to a ‘bounding image’ in which the 
pixel size is increased in a coarse approximation of the 
sprite, and then general purpose image-image collision is 
employed (see 1.6 for details).  Such a scheme would be 
less precise at the pixel level in the same way that a 
bounding mesh is less precise at the triangular mesh level, 
but with similar improvements in performance. 

1.5.5 Discrete Oriented Polytope 

The final common bounding volume is perhaps the least 
easily visualized, the Discrete Oriented Polytope or K-
DOP (where K is the number of projected faces).  To 



produce a K-DOP, the normals  of the slab faces are 
projected out to produce K- faces of the bounding 
volume.  A mo re complete discussion of K-DOP 
bounding volumes is presented by Akenine-Möller and 
Haines [6], and is beyond the scope of the simple 
detection schemes presented here.  The system described 
here is interesting in that it produces bounding shapes 
very similar to those produces by K-DOP bounding 
algorithms, although manually rather than 
algorithmically. 

1.5.6 Bounding Volume Collision Detection 

Regardless of how the bounding volume is implemented, 
it is nearly always cheaper to check for the collision of the 
bounding volumes of two objects than the actual 
triangular mesh or pixel image of the underlying object.  
In the case of any two bounding volumes that are both 
disjoint and convex, this is generally accomplished 
through the Separating Axis Theorem (SAT) [16].  SAT is 
generally employed in AABB, OOBB, and K-DOP 
bounding tests for this purpose.  It should also be restated 
that no bounding volume will offer absolutely perfect 
precision relative to the underlying mesh.  

1.6 IMAGE BASED COLLISION DETECTION 

Image or sprite-based collision detection typically comes 
in two varieties, one of which is highly optimized, and 
one of which is so slow as to be almost unusable in a 
scene requiring either great complexity and/or real-time 
use.  The first methodology is to simply use the 
rectangular bounding volume of the image, and determine 
if any of the segments that form the rectangle of the first 
image intersect any of the segments of the second.  In 
essence this is rectangle-rectangle collision detection [13], 
provided that the images are not rotated (rotated images 
generally employ a methodology in which they are 
transcribed into non-rotated recliner volumes).  This can 
be done using a combination of line-line intersection and 
point-in-rectangle strategies that are relatively triv ial, and 
therefore quick.  This is in fact the default methodology 
used by Macromedia Director for the sprite. 
intersects() function. 

The second methodology employed for use in image 
based collision detection is the use of per-pixel checks on 
the images themselves to determine overlap.  This can be 
done using a simple matte color (as is the case in 
Director) or using the alpha value present in images that 
contain an alpha channel (1-bit generally for GIF images, 
and up to 16-bits in a 48-bit PNG, the general case being 
4 or 8 bits for 16-bit or 32-bit graphics, respectively).  
The unfortunate side-effect of this type of operation is the 
absolutely massive number of discrete operations.  In 
theory, in order to perform a pixel accurate image test it 
would be necessary to check (in the worst case, a non-
collision) every single pixel of one of the images against 
the other.  In common practice, the area of overlap 
between the images is determined using Boolean 
rectangular subtraction (with many optimizations of 

similar math) and then the pixels in the overlapping area 
compared for overlap.  Even with such optimizations, 
however, the number of operations is exponentially larger 
than other, less accurate, bounding tests, and should be 
used as a last resort.  That Director® affords this 
functionality with ease does not make it the most efficient 
approach, nor is it often necessary as necessary as is 
originally thought. 

2 POLYGONAL ARMATURES FOR 
APPROXIMATE VISUAL COLLISION 

Another option for the detailed collision detection is a 
polygon armature, which is presented here as an 
alternative to image-based collision detection described in 
1.6. By representing the collision area as line segments 
we can approximate the shape of the object while 
providing a much more accurate collision detection than a 
simplified bounding shape. This is similar to a K-DOP 
bounding volume (see 1.5.5) but without the reliance on 
normal project.  This allows the armatire to be of virtually 
any size or shape, a flexibility that has been exploited to 
maximum advantage by several game designers in 
preparing the hit-box of enemies and player controlled 
vehichles.  Once the armature shape is defined, we can 
use a simple line intersection algorithm to determine 
whether one armature hits another. 

2.1 VISUAL APPEAL 

One of the key advantages that a polygonal armature 
offers over a simple bounding volume is the ability to 
better match the shape of the object in question. An avatar 
that was significantly longer than it's width would have a 
bounding sphere that did not accurately describe it's shape 
(as noted in 1.5.3). A polygon armature, however, can 
represent these shames with relative ease, given enough 
points within the polygon to define a coarse outline of the 
overall avatar.  Visually this is very effective in many 
genres of games where exact, pixel-level, collision 
detection is not needed. For example, in most shooters the 
hit-box for the player’s ship is  significantly smaller than 
the sprite that represents the ship on-screen. This is a 
common technique that allows for more frantic gameplay 
while still mantaining nice visuals. 

An example of how this would look is presented in figure 
4. In this case the central area of the ship is defined as a 
hit area but it doesn't cover the whole ship. This provides 
some nice overlap of object in the game as well as 
reducing "edge kills" that can feel leave the player feeling 
cheated.  In situations that require more precise collision, 
the definition of the bounding polygon can be increased 
and reworked to more closely match the sillouette of the 
underlying sprite.  This is fully adaptable to 3D models as 
well as sprites, provided that the armature can be 
projected onto the viewing plane in such a way that it still 
representes the edge of the model.  In situations where the 
camera employes orthographic projection this is a simple 



scale: a more complex projection would be required for 
perspective projection camera support. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. A polygon armature for detailed collision detection. 

2.2 COLLISION DETECTION THROUGH LINE 
SEGMENT INTERSECTION 

The hit region from the example in Figure 4 is  defined in 
memory by 5 vector points. These points are translated 
and rotated as necessary on every frame to stay in sync 
with the visual representation of our character. Their 
location can then be used, on a per point basis, to place 
the object into the appropriate bins (see discussion of the 
‘binning system in 1.3). Once a possible collision is 
detected, a simple iteration through the points in each 
object, in sequence, produces discrete line segments 
describing the polygon.  These line segments are then 
tested for overlap, and if any overlaps are found the object 
are said to collide. 

The equation that describes line segment intersection is an 
interesting one (see Figure 5), and one that presents many 
subtle optimizations.  The equation describes two line 
segments, denoted as A-B and C-D, in which A,B,C, and 
D represent points in Cartesian coordinate space (x,y with 
positive x moving to the right and positive y moving 
towards the top).  These values can be modified as 
necessary to account for the inversion of screen space 
and/or other coordinate systems as desired. 

 

 

 

 

 

Figure 5: Line segment intersection where the point of intersection is not 
needed.  If 0<=r<=1 and 0<=s<=1 then the segments intersect . 

First, it should be noted that the denominators of both 
equations are identical, and thus can be computed only 
once for both equations.  Additionally, if the denominator 
equals  zero, then the lines are parallel and do not formally 
intersect, and the any check for collision detection can 
return false.  (This runs the risk of the lines in fact being 
co-incident, but in such cases another two segments of the 
polygon will return the overlap).  Antonio [14] presents 
several optimizations to any implementation of this 
algorithm, including the denominator check as well as 
several other strategies to quickly throw out line segment 
intersection without computing the remainder of the 
calculations. 

It should also be noted that the equation above checks 
solely for intersection, it does not pertain to the issue of 
one bounding shape existing completely inside another.  
A complete bounding check would need to also account 
for point-in-poly collision detection, thus determining if 
one larger object completely contained another.  Haines 
[15] offers several strategies for this, as does Eberly [16].  
The authors have managed to avoid this scenario by again 
using objects that are roughly similar in size specific to 
the game environment in which the algorithms are 
implemented: it is recommended that any generic 
implementation also allow for containment checks in 
addition to intersection. 

2.3 PROGRAMMATIC IMPLEMENTATION 

In the course of implementing these algorithms, several 
optimization techniques were used to produce a fast, 
reliable collision detection scheme.  First, screen space 
was divided into discrete bins as previously discussed.  
Next, each object was assigned a list of untransformed 
vertices that comprised the bounding shape for the 
individual models.  These vertices are stored as vectors 
describing the position of the point relative to the center 
of the model (i.e. the model center is equal to point(0,0) in 
Cartesian coordinate space).  The vertices were defined in 
3D Studio Max® at author time directly on top of the 
models themselves.  These points were then exported as 
custom user-data through the Shockwave 3D® exporter 
and read into Lingo lists using the do command to 
convert from the user-data string to a list. 

After the points are obtained, they go through a process 
every frame whereby they are rotated to match the 
rotation of the model, and moved to match the position of 
the model in screen coordinate space.  This presented a 
significant speed problem because the rotation of the 
points introduced several sin and cosine operations (see 
Figure 6), each of which is exceedingly slow.  To 
counteract this, a table of pre-determined sin/cosine 
values is computed at startup for each integer in the range 
of 1-360, where zero is treated as 360 degrees (see Figure 
7).  Floating point angles obtained from the Shockwave 
3D® environment are rounded to the nearest integer, 
which because it is reexamined each frame does not 
introduce significant rounding error. 
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a y c y–( ) dx c x–( ) a x cx–( ) dy c y–( )–

b x a x–( ) dy c y–( ) by a y–( ) dx c x–( )–
-----------------------------------------------------------------------------------------------=

 

         

s
a y cy–( ) bx ax–( ) ax c x–( ) by a y–( )–

b x ax–( ) dy cy–( ) by a y–( ) dx c x–( )–
-----------------------------------------------------------------------------------------------=

 
            IF  0<= r <=1 AND 0 <= s <=1 THEN INTERSECT  



 

 

 
Figure 6: Equation describing rotation of a two-dimensional point 
around the origin in Cartesian space where [x’ y’] describes the position 
of [x y]. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Code listing for creation of a sin/cos startup table, called from 
the Startmovie event, and ghRotateVectorShape global 
handler that uses the pre-generated table. 

 

After the points are rotated and transformed to their 
screen coordinates, each point is checked to see which bin 
it is in, and a reference to the object is placed in each bin 
in which a point falls.  This process is repeated for each of 
three types of entities: enemy ships, enemy bullets, and 
player bullets, each of which is stored in its own list 
inside the bin. 

The player’s ship then begins collision detection by 
getting a list of which enemy ships and which enemy 
bullets are present in the bins that the player ship 
overlaps.  The player ship then checks its own bounding 
shape against the bounding shape for these objects using 
the code in Figure 8.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8: Lingo code implementation of poly-poly collision detection. 
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--check for collision between two poly objects 
on ghCheckForCollision(a_oPolyA, a_oPolyB) 
  bIntersects = void --eventual result 
   
  iPolyACount = 
a_oPolyA.p_aTransformedVertexList.count 
  iPolyBCount = 
a_oPolyB.p_aTransformedVertexList.count 
   
  --lets try this first with line 
intersection... 
  repeat with iCounter1 = 1 to iPolyACount 
    repeat with iCounter2 = 1 to iPolyBCount 
      bIntersects = ghCheckLineIntersection( \ 
           a_oPolyA.p_aTransformedVertexList[ \ 
             ghGetNextIndex(iCounter1, \     
             iPolyACount) ],\ 
           a_oPolyA.p_aTransformedVertexList[ \ 
             ghGetNextIndex(iCounter1 + 1, \ 
             iPolyACount) ], \ 
           a_oPolyB.p_aTransformedVertexList[ \ 
             ghGetNextIndex(iCounter2, \ 
             iPolyBCount)],\ 
           a_oPolyB.p_aTransformedVertexList[ \ 
             ghGetNextIndex(iCounter2 + 1, \ 
             iPolyBCount)]) 
       
      if bIntersects then return TRUE 
    end repeat 
  end repeat 
   

--bounding checks to stay within list length 
on ghGetNextIndex a_iIndex, a_aListCount 
  if a_iIndex > a_aListCount then 
    a_iIndex = 1 
  else 
    a_iIndex = a_iIndex   end if 
  return a_iIndex 
   
end ghGetNextIndex 

--takes 4 points describing two line segments 
on ghCheckLineIntersection a_ptA, a_ptB, a_ptC, 
a_ptD 
   
   
  f =((a_ptB[1]-a_ptA[1])*(a_ptD[3]-a_ptC[3])-\ 
      (a_ptB[3]-a_ptA[3])*(a_ptD[1]-a_ptC[1])) 
   
  --parallel or co-incident 
  if f = 0 then return FALSE  
   
  d=((a_ptA[3]-a_ptC[3])*(a_ptD[1]-a_ptC[1])-\ 
     (a_ptA[1]-a_ptC[1])*(a_ptD[3]-a_ptC[3])) 
   
  if(f>0) then    --/* alpha tests*/     if(d<0 or d>f) then  
      return FALSE 
    end if 
  else  
    if(d>0 or d<f) then  
      return FALSE 
    end if 
  end if 
   
  e=((a_ptA[3]-a_ptC[3])*(a_ptB[1]-a_ptA[1])-\ 
     (a_ptA[1]-a_ptC[1])*(a_ptB[3]-a_ptA[3])) 
   
   
  if(f>0) then    --/* beta tests*/ 
    if(e<0 or e>f) then  
      return FALSE 
    end if 
  else  
    if(e>0 or e<f) then  
      return FALSE 
    end if   end if 
   

--generate sin / cos lookup tables. 
  D3D_WORLD[#g_aSin] = [] 
  D3D_WORLD[#g_aCos] = [] 
  repeat with iCounter = 1 to 360 
    D3D_WORLD[#g_aSin][iCounter] = \ 

        sin(iCounter * D3D_WORLD[#g_fDegrad]) 
    D3D_WORLD[#g_aCos][iCounter] = \ 
        cos(iCounter * D3D_WORLD[#g_fDegrad]) 
  end repeat 
 
on ghRotateVectorShape( a_aVectorShape, 
                        a_iDegrees ) 
 
  aTempVectorShape = a_aVectorShape.duplicate() 
   
  aTransformedVectorShape = [] 
  repeat with iCounter = 1 to \ 
    aTempVectorShape.count 

 
vCurVec = aTempVectorShape[iCounter] 
    
fX=vCurVec[1]*D3D_WORLD[#g_aCos][a_iDegrees]-\         
vCurVec[3]*D3D_WORLD[#g_aSin][a_iDegrees] 
    
fZ=vCurVec[1]*D3D_WORLD[#g_aSin][a_iDegrees]+\         
vCurVec[3]*D3D_WORLD[#g_aCos][a_iDegrees] 
        
aTransformedVectorShape[iCounter] = \ 
                              vector(fX, 0, fZ) 
  end repeat 



In the code presented above, a poly object has as a 
property its transformed points as a list.  The global 
functions loop through the points of the first poly creating 
line segments A-B, B-C, C-D, etc and comparing these 
segments to each segment constructed from the second 
poly. The ghCheckForCollision and the 
ghGetNextIndex handlers are used as wrappers to 
produce the correct line segments for collision checks, the 
meat of collision detection is contained in the 
ghCheckLineIntersection handler, which is an 
implementation of the mathematical equation presented in 
Figure 5, with some of the optimizations presented by 
Antonio [14] implemented in Lingo.  As soon as a 
collision is detected, the function returns true and the 
game logic can take appropriate action for intersection.  
After the player is checked for collision against the enemy 
ships and bullets, the enemies are checked against the 
player’s weapon objects.  A screenshot of only ship-ship 
collision detection using this methodology is presented in 
Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Ship-Ship collision detection using polygonal armatures in a 
game engine.  Image taken from the Broadsword project, copyright © A. 
Phelps and A. Cloutier, Rochester Institute of Technology 2003. 

3 CONCLUSIONS 
Multi-tiered approaches that incorporate trees, data 
simplification, and mathematical tests as opposed to pixel 
based imaging are significantly faster than image-image 
comparisons.  In addition, such measures can be 
extrapolated into environments in which image-image 
collision is not readily available, such as a three-
dimensional environment viewed through orthographic 
projection.  Additionally, when used in game 
environments, the use of polygon armatures for collision 
detection is  especially advantageous as it offers designers 

and play-testers control over the size of the hit-box on 
various elements within the game as a tunable feature.  
Future work would likely incorporate the use of other 
bounding shapes and checks such as spheres and discrete 
triangles to further minimize the number of checks and 
calls performed on a per-frame basis, and to further push 
the expensive collision-detection methodologies further 
down the chain, thus allowing for faster frame rates and 
more engine cycles to devote to other tasks. 
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