
3DISO: Adapting Isometric Scrolling Theory to 3D Worldspace using
Shockwave 3D and Lingo

Andrew M Phelps
Information Technology Dept.

Rochester Institute of Technology
College of Computing and Information Sciences

Rochester, NY, 14623
http://andysgi.rit.edu/ amp@it.rit.edu

Artwork by
Andrew M Phelps

and
Shawn P Boyle

Information Technology Dept.
Rochester Institute of Technology

College of Computing and Information Sciences
amp@it.rit.edu spb@it.rit.edu

Abstract

This paper represents an overview of recent work
in the Shockwave 3D environment that seeks to
implement a ‘scrolling’ game engine in a truly
3D environment. Specifically this engine seeks
to adapt to 3D the following 2 axioms that are
the basis of optimization in Isometric Game
Engines: (a) It is possible to simulate a very
large world by using a map of the world-space in
memory which does not involve using either
images or geometry, and (b) any tile that is more
or less identical can use the same geometry and
texture map, which further reduces the size
needed to represent the world as a whole.
In explanation of the engine presented here this
text also provides background information on
general scrolling theory and in particular the
Isometric perspective as appropriate, along with
what is intended to be an informative literature
review of recent relevant material. In addition
this engine is presented with the background
Isometric code-base that was used to design a
similar engine in a completely 2D environment,
as a point of reference for developers hoping to
adapt existing 2D solutions to more robust 3D
environments. Collision detection, path-finding
algorithms, and path culling are also discussed as
appropriate. Both of these engines are presented
in a primarily un-optimized form to aid in ease of
understanding. Optimized versions of the same
engines will be made publicly available.

1 DEMO FILES AND WORLD
OVERVIEW

1.1 TUTORIAL FILE SETUP
To explore what a 3D scrolling world engine does, the
first thing to do is to examine one so that one can have a

frame of reference as to the type of environment that is
being simulated. To begin, open the ‘3DISO_ENGINE_
RELEASE_XX’ file associated with this paper, and start
the movie. After a few moments of initialization and
terrain generation, you should see something similar to
the screenshot below (see figure 1). Use the forward (up)
arrow key to move the character (represented in early
versions of this work as an un-textured cube) around the
world, and press the right and left arrow keys to spin
(pressing the right and up key simultaneously will bank
right, and the left and up arrow combination will bank
left). Also, use the ‘q’ character key to cycle through the
rendering modes. Pay special attention to the wire-frame
mode, as this is the mode that essentially gives away the
illusion with regard to the inner workings of the engine.

Figure 1: 3DISO Engine in action.
The character is initialized at engine startup facing
northwest, with a camera position that exactly simulates a
standard isometric projection (see section 2.X). Use the
‘w’ (up), ‘a’ (left), ‘d’ (right), and ‘x’ (down) keys to
manipulate the camera into various views. Note that the
view will remain centered on the character representation,
and that the engine marks some boundaries with regard to
camera movement (it is not possible, for example, to
move the camera below the ground-plane).

1.2 CODEBASE OVERVIEW
Table 1: Engine Parameters and Tuning Variables

VARIABLE PURPOSE
UseTerrainMap Tuning Variable that turns on/off

functionality to read terrain height from
grayscale images.

FogEnabled Tuning Variable to turn on/off fog.

LightsEnabled Tuning Variable to turn on/off lighting.

gWorld Pointer to the Shockwave 3D member

gTileSize Size, in pixels, of the edge of a tile (tiles
are assumed square)

gNumTilesX Number of tiles to use in on the X axis,
preferably an odd number.

gNumTilesY Number of tiles to use in on the Z axis,
preferably an odd number.

gMapSizeX Width of map array in X direction.

gMapSizeY Width of map array in Y direction.

gBackColor RGB color value of background.

gFogColor RGB color value of fog (if enabled).

gLightColor RGB color value of main scene light.

CharacterHeight Y Value of the characters’ bounding
box.

CharacterWidth X Value of the characters’ bounding
box.

CharacterLength Z Value of the characters’ bounding
box.

CharacterSpeed Speed of the main character, must be
less than one-half gTileSize or bounding
algorithm will fail.

LightHeight
Offset

Y value describing the height of the light
source above the characters bounding
box.

gRotSpeed Number of degrees camera rotates each
frame when moved.

gRotHeight Maximum number of rotations allowed
around origin in vertical direction.

gRotMin Minimum number of rotations allowed
around origin in vertical direction.

TerrainMap
Member

Name of the member used as the
grayscale image for terrain generation if
UseTerrainMap is enabled.

gMainChar Pointer to the main Character object,
which is responsible for movement,
rotation, and alignment.

The basic variables that describe the 3DISO engine are
presented in Table 1; experimentation with the various
parameters is encouraged. Additionally, any bitmap

added to the “TileTextures” cast will be added to the
world as a texture upon startup, although it won’t be used
without referencing that texture somewhere in the map.
The engine ships with a few textures and a default map,
users are encouraged to make their own maps by
modifying the text-files that are included in the download
(author’s note: the pre-release of this document does not
yet support dynamic map loading).
 The 3DISO engine is based, in part, on an earlier
Isometric engine that was developed under Director 8.0 in
a completely 2D environment. The 2D engine was
eventually abandoned with the release of Director 8.5 for
the following reasons: (a) the Director 8.5 release allowed
developers access to hardware accelerated graphics,
which can provide increased performance through the use
of the 3D cast-member, (b) the 3D engine also makes it
significantly easier to implement lighting algorithms as it
is able to access hardware texturing and lighting modes,
and (c) it is now common practice in the larger gaming
community to use full 3D environments for Isometric
style engines for a number of reasons that will be
discussed in this paper. Because of this development
path, the 2D Isometric engine is also included here, as it
had already implemented obstacle avoidance and path-
finding algorithms, but is provided on an ‘as is’ basis, as
refinement and further work is reserved for the successor
version which makes use of the advanced functionality of
8.5. A brief glance at the Isometric engine included with
this package is shown in figure 2.

 Figure 2: Isometric scrolling engine.

2 TILE ENGINES AND SCROLLING
THEORY

2.1 THE ROOTS OF SCROLLING THOERY
Scrolling Worlds have existed as a mainstay of the

gaming industry for a number of years, primarily due to
their versatility and speed. Games that employ these
theories, or ‘scrollers’ were present in some of the earliest
manifestations of platform games, such as Atari’s
‘Pitfall!’ and (much) later ‘Rai Den’ and ‘1954’. The
underlying principle is incredibly simple: the engine

should only use as many graphics as it takes to completely
fill the users screen, or viewable area (whichever is
smaller). Anything else is unneeded and a waste of
processor cycles. The trick comes in trying to express the
illusion of a ‘world’ that is much larger and more
interesting that a single screen. The first series of games
to accomplish this feat did so in a decidedly two-
dimensional and simplistic fashion, and yet this technique
remains appropriate today, primarily due to its simplicity.
This first incarnation of the scrolling world can be
thought of as the ‘sideways scroller’ although it should be
noted that that the technology behind the engine can just
as easily be applied to vertically oriented games.

Let us then briefly dissect a ‘sideways’ scrolling world.
More often than not, the player will have a character, or a
representation of the players self somewhere on the
screen. In the earliest scrollers, the representation almost
always did not move. Instead, the character would
animate such that it would appear to walk or run or jump,
but the center point of the character would remain fixed.
The ‘movement’ would instead be applied to the
graphic(s) that made up the background, or world
representation (see figure 3).

Figure 3: Sideways Scrolling Breakdown

In the scheme pictured above, it is apparent that the
image scrolls from the right of the screen to the left,
producing the illusion that the character is running to the
right. One way to accomplish this would be to use an
image the width of the world, and then move the image
across the viewable area from right to left. Unfortunately,
this would also have the effect of destroying the ability of
the game to work on any low-end platform, and would
limit the size of the world significantly as the constraining
factor is now the size of the image that the program can
load and move in real-time.

A more elegant solution is to use several small
graphics, to ‘tile’ the viewable area, and to move them all
to the left as the character moves. As a row of these tiles
move off the screen to the left, those tiles are removed
and more tiles are added to the right edge. Tiling a screen

is then a kind of shell game, keeping just enough graphics
on the screen to completely cover the area, without using
any more than are required. In more modern solutions, the
engine will employ the use of a clipper object (either in
DirectX level code, or provided to the developer by the
application as is the case in Shockwave 3D) to ensure that
the engine does not waste any time calculating pixels
outside the viewing area.

There is however, another level to the complexity of
scrolling worlds that are not randomly generated, and that
is the concept of the map or level file. As previously
shown in the Maze example [1], it is often useful to
describe a large world-space in memory, without the
burden of storing the graphical representation of the
world. Tiling engines take this one step further, and
define a map of tiles, each of which stores some value that
is associated with the texture, or bitmap, associated with
the tile [2][3], but not the bitmap itself. Modern engines
traditionally store these maps either in simple arrays, or,
in situations where they have to be searched at very high
speed, it is often the case that the map will be stored in a
data structure that provides access and search methods
based on B, B+, and B* trees.

Given that there is a map in memory that defines
each tile and the graphic associated with it (but not the
graphic itself), a separate area of the engine will draw the
tiles to the screen, and will ‘look’ into the map to
determine which graphics to use based on the characters
position (see figure 4).

Move All non-Char
graphics this way…

Don’t move Char this way

Figure 4: Map File Lookup for Sideways Scrolling. Figure
based on work of C. Froman, published in [8].

Of course, this is relative in the sense that the scale is
arbitrary. Different engines will use a different scale
depending on the level of detail desired and world
illusions attempted. The important thing is that as the tiles
are shifted from the right to the left, the indices into the
map are changed based on the current position variable
associated with the character, even though the
representation of the character does not move. Thus, as
the character moves to the right, the tiles continue to fill
the screen, but the indices into the map change, and thus
the actual graphics drawn in each tile also change. There

is also a very easy and important optimization that can
occur: any areas that can be represented with the same
graphic without destroying the illusion of a seamless
world, should be. This is due to the fact that while the
graphic may be referenced in the map more than once,
and possibly drawn to the screen more than once, it will
only need to be stored once in memory [4]. This
methodology of graphical reuse can have a drastic effect
on the overall memory space needed to represent a world,
as the example below illustrates rather dramatically (see
figure 5). Many graphics tools make it easy to create
small graphics that fit together to form a seamless pattern
by using cut, paste, and mirror operations (see figure 6).
Thus by using a relatively small bitmap, a large area can
be textured effectively, and if multiple areas of the world
use the same elements, this can be further capitalized on
by referencing a map, which in turn references the same
graphic element.

There is a distinction that should be made here
between ‘scrolling engines’ and ‘smooth scrolling
engines’. The original scrolling engines operated by
moving the tiles the exact number of pixels equal to the
width of a tile. This then locked the size of the tiles to the
speed of the scroll, and was thus not an optimal solution.
More recent engines, however, use a double tracking
system to monitor character movement. The first system
monitors the characters position in pixels, and a character
will move forward in some measurement that is in a unit
of pixels. When the number of pixels moved exceeds the
size of a tile, then the characters position on the global
scale changes, and the map indices shift.

In the engines presented here, this is accomplished
by using an x and y value within the Character structure
to store the pixel level coordinates, and a
Current_Position_X and Current_ Position
_Y value to store the global, or map level, coordinates. In
the event that the characters local x or y falls outside the
tile centered on the character at startup, the characters x
and y are then set to the other side of the tile, entering, if
you will, the same tile where they would have entered the
next were they not ‘wrapped’. In a simple 2D scroller this
is relatively simple because the character moves in a
single direction, and generic if / else logic is adequate to
see if the characters position (the variable not the bitmap
location) has exceeded the length of a given tile. This
allows a character to move at the sub-tile level with
accuracy.

It is important, however, to exactly bound the tile
such that as a character moves the wrapping occurs with
great accuracy, as any errors will result in a jitter to the
entire world movement. This system of allowing sub-tile
accuracy is generally referred to as ‘smooth scrolling’,
and is often accurate to the pixel or sub-pixel level. Other
names for systems such as this described here are ‘pixel-
scrollers’ [3] or ‘ pixel-accurate scrollers’.

Figure 5: Size reduction by use of tiling graphics. Note both the
variability of the referencing of a tile, and the banding that can
occur in poorly prepared tiles (white verticals left for illustration
purposes only).

2.2 SCROLLING IN TWO DIMENSIONS
SIMULTANEOUSLY

Scrolling in two dimensions can, in some sense, be
thought of as an extension of single direction character
movement, with a mathematical structure of a slightly
more rigorous base. Simultaneous scrolling technology
has been around for a while now, with classics like
Nintendo’s Legend of Zelda and Sega’s Phantasy Star
Series (see figure 7) serving as an impeccable example of
the genre. Indeed, most systems to this day operate on the
following two principles: that the data structure that holds
the center point stores with it information about the angle
the character is heading, and that the engine has the
capability to convert between the local (character)
coordinate system and the Cartesian (screen based)
coordinates. Such systems are consistent with the Turtle
Graphics methodology developed at MIT under Ableson

Figure 6: Cut, Paste, and Mirror to produce aligning Tiles

[5], although they can be implemented through a variety
of mechanisms.

Generally speaking, it is easiest to think of the
movement of a character in a 2D scroller by using vector-
based mathematics. Assume that a character has an angle
(measured in either radians or degrees) and stores within
itself an x and y value representing position on the
horizontal and vertical axis respectively. Also assume that
the character stores within its structure a speed, or a
number of pixels to be moved each frame. By using
Pythagorean math, we can assign a vector of movement to
the character of a magnitude equal to the characters’
speed. By using the equation a2 + b2 = c2 the engine
can calculate both the x and y component vectors that
would equal such a movement. Then the engine will move
the tile structures both -x and -y, to give the illusion that
the character moved in a positive direction (see figure 8).

Figure 7: Phantasy Star I release date 1988. Originally released
for the Sega platform, copyright 1988-2001 Sega® Corp.

Figure 8: Moving in 2 directions where the eventual tile
translation is equal to –1 * sqrt(Character X momentum (A) *
Character X momentum + Character Y momentum (B) *
Character Y Momentum). Note that the perpetual use of the
sqrt() function is classically slow.

The use of the square root function is particularly

slow, and should be avoided in production code. Methods
to avoid its use are plentiful in game programming

literature, from classic line algorithms at the pixel level,
to distance bounding based on the squared distance and
co-ordinate conversions to single screen space through the
use of a lookup table. It is also possible to use the angle
the character is facing to derive the new x and y location
after a move, which is essentially the same idea as above
in a slightly more compacted fashion, except that it uses
the cos and sin function which, while still generally
regarded as slow, may be faster than sqrt() on many
systems, depending on the programming environment.
Depending on the performance requirements of the game
you are designing it may be that using sin and cos in
your environment is not an option, just as it may also be
the case that such a use is exceedingly trivial. The code to
derive the delta-X and -Y in the Director environment is
outlined in figure 9, which is based on the early work in
character movement at the Rochester Institute of
Technology [6], which is based again in part on Ableson
[7] as well as others.

--assume degrad = 3.1416 / 180
on move me
 x = x + cos(degrad * angle) * speed
 y = y + sin(degrad * angle) * speed
-- check for moving more than a tile width
-- or moving more than a tile height
-- move tiles -x, -y
end

Figure 9: Code Listing for 2D Scrolling Character Movement in
Lingo Environment. Originally derived by Kurtz, see [6] for
details.

Special attention must also be paid to the
‘wrapping’ of the tile, or knowing when to shift the
indices into the map lookup functions. The code must
now catch the possibility that not only will the character
move past the tile size from left to right (x axis) and top to
bottom (y axis), but the possibility that if the character is
moving at an angle, both of these conditions will be true.
An un-optimized version of such a bounding mechanism
is presented in figure 10, where rx is equal to the current
x value of the character in screen coordinate space, ry is
equal to the current y value of the character in screen
coordinate space, gTileSize is the length of one edge
of a square tile in pixels, and halfTileSize is one half
that value.

if rx > halfTileSize then
 x = x - gTileSize
 gCurrentPosX = gCurrentPosX + 1
 if ry > halfTileSize then
 y = y - gTileSize
 gCurrentPosY = gCurrentPosY + 1
 else if ry < -halfTileSize then
 y = y + gTileSize
 gCurrentPosY = gCurrentPosY - 1
 end if
else if rx < -halfTileSize then
 x = x + gTileSize
 gCurrentPosX = gCurrentPosX - 1
 if ry > halfTileSize then

 y = y - gTileSize
 gCurrentPosY = gCurrentPosY + 1
 else if ry < -halfTileSize then
 y = y + gTileSize
 gCurrentPosY = gCurrentPosY - 1
 end if
else if ry > halfTileSize then
 y = y - gTileSize
 gCurrentPosY = gCurrentPosY + 1
 if rx > halfTileSize then
 x = x - gTileSize
 gCurrentPosX = gCurrentPosX + 1
 else if rx < -halfTileSize then
 x = x + gTileSize
 gCurrentPosX = gCurrentPosX - 1
 end if
else if ry < -halfTileSize then
 y = y + gTileSize
 gCurrentPosY = gCurrentPosY - 1
 if rx > halfTileSize then
 x = x - gTileSize
 gCurrentPosX = gCurrentPosX + 1
 else if rx < -halfTileSize then
 x = x + gTileSize
 gCurrentPosX = gCurrentPosX - 1
 end if
end if

Figure 10: Un-optimized bounding for square tiles in two
Dimensions (this can be simplified to a 4 step case
statement, and possibly further)

2.3 PARALAX AND OTHER ENHANCEMENTS
It should be noted that straight scrollers (and to

some degree Isometric engines as well) will benefit from
the inclusion of certain visual enhancements to increase
the realism of the scrolling illusion. First and foremost
among these ‘tricks’ is to develop a system that
approximates parallax scrolling, meaning that objects in
the foreground will appear to move a greater distance than
those in the background. This can be demonstrated by
sitting in a car and driving along a road where you can see
a great distance. Focus on a near object, like the guardrail
of a freeway, and attempt to observe how fast it is
‘moving’. Now focus on an object in the distance, near
the horizon, and observe how fast it is ‘moving’.
Obviously, neither one is moving, in fact you are, but the
entire illusion of scrolling is based on the illusion that in
fact you are still and everything else moves. As such, it
must approximate the illusion that parallax produces,
namely objects in the foreground appear to move faster.
This is generally accomplished by placing the graphics
on different surfaces or planes and moving them
independently.

It is also possible to simulate a number of other
effects on the 2D plane that simulate natural phenomena,
another commons example would be ‘camera
perspective’. This effect is in response to the fact that, in
either a straight scroller or isometric projection, objects in
the foreground do not appear any larger than objects in
the background. As this is one of the foremost visual
clues that allow us to recognize depth in space, many
other techniques are now of primary import, namely
overlap (or z position), and shadow. However, some

engines attempt to bend or skew the isometric tile layout
such that objects at the ‘bottom’ use slightly larger tiles
than those at the top. Usually, this involves drawing the
standard projection to a buffer, and then using an
algorithm to ‘space out’ the images towards the bottom
before it is drawn to the screen. Other engines shift the
pixels out from the character’s position producing a ‘fish
eye’ perspective centered on the character. While none of
these are mathematically correct, they can add realism
beyond the projections implemented here, and should be
considered depending on presentation style and
performance capability assessment.

3 ISOMETRIC LANDSCAPES

3.1 DERIVATION OF THE ISOMETRIC VIEW
As game engines have become more advanced,

engine designers have focused on creating the illusion of
depth, or 3D, long before it was possible in hardware.
This lead to countless experiments to simulate depth using
traditional sprites, one of which was games based on sys-
tems similar to the first-person maze presented by this
author in earlier research [1]. Another such ‘perspective
trick’ is the Isometric view, which is derived as follows
from the earlier work in top-down scrolling tiled
environments. Assume that there is a camera in 3D space
staring directly ‘forward’ on a tile, producing a square
image on the screen (this can also be thought of as staring
‘down’ on a tile in top-down systems as shown in figure
10). Next, raise the camera up half the distance between
the camera and the tile. This produces a perspective
environment where a square tile will now appear to ‘slant
inward’ towards the top in a trapezoidal fashion. Finally,
the camera is rotated about the world center by forty-five
degrees such that the corner of the tile is now facing the
viewer. These viewpoint rotations produce, in 3D space,
the view of a tile that matches the standard isometric
diamond, where a tile is a perfect trapezoid whose width
is two times the height, although by raising and lowering
the camera other ratios are possible, and have been used
to great success.

Because the tiles can present 2 sides of the same

object, it is possible to present objects in a way that
realistically simulates 3D, although there are a few
limitations. First, lighting is nearly always ‘locked’ to a
given angle, often using a number of tile layers to achieve
the effect by layering separate maps for the shadow
elements (see figure 11). While this can produce
remarkably realistic results, it is important that all
elements be pre-shaded from the exact same angle, else
the illusion is destroyed. Because the Isometric projection
is parallel, or more formally an orthographic projection, it
has no vanishing point (which is why all the tiles can be
identical). This distorts traditional depth cues such as size
or focus, which tends to be more and more disorienting

the larger the view. There have been a few games that
have modified the camera projection to bend this rule and
alleviate some of the distortion [8], however it still does
not approach the realism of a true 3D projection.

Figure 10: Derivation of the Isometric View

Figure 11: Layered Iso maps for base, shadow, and object

3.2 IMPLEMENTATION OF THE ISOMETRIC
VIEW

Given that an Isometric tile environment requires
the entire screen space to be covered with isometric tiles,
lining them up in a scheme designed to cover the entire
area is critical. There are 3 major schemes for
accomplishing this task, each with advantages and
disadvantages. The first of these schemes involves using
the tiles to create essentially one large tile (see figure 12),
which has the advantage of the easiest numbering system
with regard to the tile-space, but tends to waste a large
number of tiles relative to the viewable area (if all are
drawn). This is commonly referred to as the “diamond

map”, and is used in smaller web based sims, but can
suffer from performance drawbacks without a well
optimized clipper, as it clips a large number of tiles to
produce a full-screen effect.

The second scheme, or “column map”, involves
fitting the tiles into standard rows and columns, with
every other column shifted up or down to fit the outline of
the neighboring columns (see figure 12). This uses the
smallest number of tiles, and thus would theoretically
operate the fastest, but the movement of the character is
more difficult to calculate as shown in the diagram.
Essentially a character will move 2 units on the cardinal
directions and 1 unit on the diagonal. To further
compound the issue, a character may not change value in
the y direction depending on the current x position of the
character, since the tiles are offset in their column
position. An algorithm to accomplish such a movement
will likely examine the current position of the character,
determine if the character is currently on an odd or an
even row, and then adjust the CurrentPosX and
CurrentPosY variables accordingly.

The final “slide map” solution is possibly the easiest
to navigate and render, but is of limited utility due
primarily in the difficulty in creating meaningful level
creation tools. In a slide map, X increases to the east, and
Y to the southeast, so programmers generally regard the
movement algorithms as cumbersome the first time
through. To move south, for example, involves a tile plot
one tile west and 2 tiles south-east. Implementing
collision detection and path plotting on top of a system
like this is cumbersome, and so slide maps are generally
reserved for quick scrolling action games that choose
speed over accuracy (as opposed to, say, strategy sims).s

Objects

Shadows

Base

Final

Figure 12: Tiling schemes for Isometric engines

3.3 BOUNDING OF ISOMETRIC TILES AND
MOVEMENT DIFFICULTIES

The real trick in Isometric tile engines comes in

bounding them effectively. Such engines are almost trivial
if implemented in a non-’smooth scrolling’ fashion,
because shifting the tiles to meet a new character position
is simplistic if the character can never move from the
center of tiles (all that is necessary is the shift in map
lookup for tile-texture swap). Again, this generally results
in the use of very small tiles, since it is unlikely that the
speed of the character will be more than 5-20 pixels.

Creating a smooth-scrolling tile engine is more difficult.
First, it should be noted that it is generally regarded as
good practice to overlap the tiles by a pixel on the edges
to avoid tearing when they are moved across the screen. It
is possible, and often likely, to continue to use our
movement system from the standard 2D scroller, but the
angle of the character is almost always locked to 8
possible directions (an example of direction locking is
presented by Morrison [9], but is not limited to the
discussion of Isometric environments). This set of legal
directions includes the 4 cardinal points and the 4
diagonals (which are not 45 degrees, due to the skew of
the perspective view). If a character can be known to
move in units of a full tile (like a simple scroller), it is
possible for the engine to simply iterate from start to
finish position at the pixel level, again using Pythagorean
math on the diagonals. This approach has the advantage
of offering the appearance of smooth-scrolling, but still
locks the movement of a character to the center of the
tiles. It can, however facilitate the use of much larger tiles
than a the first approach described earlier

A more complex solution will allow the character to
move at angles that are not the standard eight, however
this greatly increases the complexity of the engine. The
first step is to correctly bound the tile in such a fashion
that it is known when a characters movement would cause
a ‘wrap’ or a shift in the global position of the character
relative to the map. There are 3 major schemes to doing
so, one of which is array based, and two of which are
mathematical.

Figure 14: Array based division of a tile

The second mechanism to effectively bound an isometric tile
when the angle of character movement is unknown is to use the
standard x and y coordinates of the character to determine if the
character is still within the tile. This can be accomplished by
manipulating the standard equation for a line (y = mx + b) into
an algebraic inequality that is true while the character is inside
the tile, and false otherwise (which signals the need to wrap the
character to a new x/y and modify the indices for map lookup).
This inequality can be defined as |y| <= m*|x| + b, where x
and y are the characters coordinates on the 2D screen
plane, m is equal to the slope of the tile edge in quadrant

I, and b is equal to the y value at which the top of the tile
strikes the y Axis. For the standard Isometric projection
in which width = 2*height, m = -0.5 and b = tile_width / 4
(see figure 15 for details).

ImplicitPlot@Abs@yD m −0.5 ∗ Abs@xD + 1, 8x, −2,2<,
Frame→ True,GridLines→ Automatic,
Background → RGBColor@0.85, 0.85, 0.85DD

-2 -1 0 1 2
-1

-0.5

0

0.5

1

Figure 15: Mathematical bounding of an Isometric Tile using the
inequality |y| <= m*|x| + b.

Such an approach is at once easier and more
difficult than the more standard array lookup. The array
lookup benefits from the fact that even though the
movement of the character can occur at any angle, such a
movement can fall in one and only one pixel, which
instantaneously arrives at a new X,Y location once it is
known which tile the character has moved to. The
mathematical solution, while infinitely precise, suffers
from the idea that it is not always clear which tile a
character should wrap onto, as the angle of the character
is a determining factor (see figure 16).

 00000000000000000010000000000000000000
00000000000000001111100000000000000000
00000000000111111111111111000000000000
00000001111111111111111111111100000000
00011111111111111111111111111111111000
11111111111111111111111111111111111111
00011111111111111111111111111111111000
00000001111111111111111111111100000000
00000000000111111111111111000000000000
00000000000000001111100000000000000000
00000000000000000010000000000000000000

M ultiple possibilities on
tile wrap, depen-dant on
angle…

Problematic
angles

Figure 16: Areas of uncertainty when mathematically bounding
Isometric tiles.

Because of this uncertainty, and the inability of the
equation to account for specifically which quadrant the
character is moving from (since the inequality uses the
absolute value of the current location), the eventual
wrapping algorithm is much more complex than that of a
simple square tile (see figure 17).

on move me
 set x = float(x + (cos(degrad * angle) *
speed))

 set y = float(y + (sin(degrad * angle) *
speed))
 b = tile_size / 4
 if abs(y) <= -0.5 * abs(x) + b then
 --still inside tile
 else
 sway = not sway
 intersect_y = -0.5 * x + b
 y = (-intersect_y - (y - intersect_y) \
 + ((sin(angle * degrad)) * speed))
 intersect_x = (y - b) * -2
 x = (-intersect_x - (x - intersect_x) + \
 ((cos(angle * degrad)) * speed))
 if (abs(y) < speed) then
 if (abs(sin(angle*degrad))>=0.4636) then
 tx = x
 if tx < 0 then
 if (sin(angle*degrad)<=0.4636) then
 y = - x / 2
 x = 0
 if current_pos_x mod 2 <> 0 then
 current_pos_y=current_pos_y-1
 end if
 current_pos_x=current_pos_x-1
 else
 y = x / 2
 x = 0
 if current_pos_x mod 2 = 0 then
 current_pos_y=current_pos_y+1
 end if
 current_pos_x=current_pos_x-1
 end if
 else
 if (sin(angle * degrad)<=0.4636) then
 y = x / 2
 x = 0
 if current_pos_x mod 2<>0 then
 current_pos_y=current_pos_y-1
 end if
 current_pos_x=current_pos_x+1
 else
 y = - x / 2
 x = 0
 if current_pos_x mod 2=0 then
 current_pos_y=current_pos_y+1
 end if
 current_pos_x=current_pos_x+1
 end if
 end if
 else
 if x > 0 then
 current_pos_x=current_pos_x+2
 sway = not sway
 else
 current_pos_x=current_pos_x-2
 sway = not sway
 end if
 end if
 else if (abs(x) < speed) then
 if (abs(cos(angle * degrad))>=0.4636) then
 ty = y
 if ty < 0 then
 if (cos(angle * degrad)<=0.4636) then
 x = - y * 2
 y = 0
 if current_pos_x mod 2 = 0 then
 current_pos_y=current_pos_y+1
 end if
 current_pos_x=current_pos_x+1
 else
 x = y * 2
 y = 0
 if current_pos_x mod 2=0 then
 current_pos_y=current_pos_y+1
 end if
 current_pos_x=current_pos_x-1
 end if
 else
 if (cos(angle * degrad)<=0.4636) then
 x = y * 2
 y = 0
 if current_pos_x mod 2 <> 0 then
 current_pos_y = current_pos_y - 1

 end if
 current_pos_x = current_pos_x + 1
 else
 x = - y * 2
 y = 0
 if current_pos_x mod 2 <> 0 then
 current_pos_y = current_pos_y - 1
 end if
 current_pos_x = current_pos_x - 1
 end if
 end if
 else
 if y > 0 then
 current_pos_y=current_pos_y-1
 sway = not sway
 else
 current_pos_y=current_pos_y+1
 sway = not sway
 end if
 end if
 else if (x > 0 and y > 0) then --quadrant 1
 tx = x
 ty = y
 x = float(2 * ty)
 y = float(tx / 2)
 if (current_pos_x mod 2 <> 0) then
 current_pos_y = current_pos_y - 1
 end if
 current_pos_x = current_pos_x + 1
 else if (x < 0 and y > 0) then --quadrant 2
 tx = x
 ty = y
 x = float(-2 * ty)
 y = float(-tx / 2)
 if (current_pos_x mod 2 <> 0) then
 current_pos_y = current_pos_y - 1
 end if
 current_pos_x = current_pos_x - 1
 else if (x < 0 and y < 0) then --quadrant 3
 tx = x
 ty = y
 x = float(2 * ty)
 y = float(tx / 2)
 if (current_pos_x mod 2 = 0) then
 current_pos_y = current_pos_y + 1
 end if
 current_pos_x = current_pos_x - 1
 else if (y < 0 and x > 0) then --quadrant 4
 tx = x
 ty = y
 x = float(-2 * ty)
 y = float(-tx / 2)
 if (current_pos_x mod 2 = 0) then
 current_pos_y = current_pos_y + 1
 end if
 current_pos_x = current_pos_x + 1
 end if
 end if
 end if
end calc_move

Figure 17: Complete Bounding Algorithm for Isometric Tile
Engine with unlocked character rotation and movement.

As shown, the eventual bounding for an unlimited
range of motion relative to an isometric grid is relatively
complex, particularly if this is required to execute every
frame to produce movement. A third solution is also
possible if we are using a ‘point and click’ navigation
style, rather than a keyboard driven ‘self steering’
mechanism, because it is the engine that calculates the
path rather than the player. If this style of interaction is
chosen, then it is generally efficient that since the engine
has a start location (current character position) and an end
location (point clicked converted to map coordinates), the
engine can calculate a path from one to the other as a

series of intermediate points, and move the tiles to each
point in the path in sequence producing the desired
illusion of movement. Many games operate on this
optimization, with the possibility that the engine can, if
required, cycle between the path points using the
Pythagorean approach described earlier in this section.
More advanced solutions will use Bezier or spline curves
in their pathing calculations to avoid the angularity that is
visible using straight interpolation.

While the above algebraic inequality solution is
adequate, and sometimes desirable for inter-tile collision
detection (not used in any demo here), it is cumbersome
to say the least. The third, and often regarded ‘best’,
solution is to simply bound a square tile and then take
appropriate movement as if the tile was isometric. In
essence, use the algorithm from the first (square) tile
bounding discussion, but then relate that movement to the
isometric grid. This has the advantage of a much simpler
algorithm for bounding, while at the same time offering
the benefits of the isometric view. Used with the
differences between slide, staggered, and diamond maps
[2] this solution can offer a wide range of scrolling
options, suitable to 99% of the needs that game engines
present.

3.4 SECREEN TO MAP AND MAP TO SCREEN
The traditional methodology of transporting screen to
map and map to screen coordinate values are often hairy
and somewhat annoying. The engines presented here use
a somewhat modified form of the traditional isometric
methods in the first (2-D) iteration, and rely heavily on
Lingo methods supplied in Shockwave 3D for the 3-D
implementation, namely the modelUnderLoc and
modelUnderRay commands, in #detailed mode.
In most 2D isometric engines, it becomes very difficult to
determine which tile was clicked on (and thus, which
corresponding map value is desired). This is solved by
using a graphic similar to the one pictured in figure 17 as
a lookup table on the click.

Figure 18: Color tile for mouse x/y conversion(s) in a traditional
isometric tiling engine.

Essentially the screen is divided into a vertical and

horizontal grid and it is determined which square the
event has occurred. Then, in order to determine the exact
tile, the function uses the mouse x and y positions relative
the the current square (or ‘bin’) that was clicked, and

retrieves the color value from the graphic. If this color
value is white, then the tile x value will be even (mod 2 =
0) and the tile y value equal to the number of bins ‘down’
the screen. If, however the value is not equal to
#rgb(255,255,255) then one of four possible shift
operations to the base coordinates are performed. If, for
example, the color returned was red, then the x value
would be bin x + 1, and the y value would be y or y+1
depending on the value of x mod 2 (even or odd). In
short, isometric coordinates are annoyingly complicated.
Tracing the code in the MapToScreen and ScreenToMap
handlers (in the older 2-D engine) offers a careful study of
these operations.

True 3D environments, however, suffer from none
of this complexity, as the tiles are in fact square.
However, there is a second, more complicated issue in
that the 3-D environment can be seen from many different
possible projections (assuming the camera can be rotated)
and, by introducing possible elevation into the equation,

3.5 TRADITIONAL PATHFINDING
The pathfinding implemented in the 2-D Isometric system
is based entirely on the ‘classic’ A* algorithm presented
by Stout [17] and optimized by Rabin [18]. The A*
algorithm is essentially an ordered search pattern, with
weights associated with each node in the tree (each node
corresponding to a map location). The basic pseudocode
for the search then looks something like:

Open = PriQueue of searchNodes
Closed = PriQueue of all searched nodes

AStarSearch(StartLoc, GoalLoc) {
 clear Open and Closed
 StartNode.loc = startloc
 StartNode.CostFromStart = 0
 StartNode.CostToGoal = \
 PathCostEstimate(StartLoc, GoalLoc)
 StartNode.parent = null
 push StartNode on Open

 while Open != Empty
 {
 pop Node from Open
 if Node.loc = GoalLoc
 ConstructPath()
 return success (or path)
 else
 for each neighbor NewNode of Node {
 NewCost = Node.costFromStart + \
 TraverseCost(Node, NewNode)
 if newNode is in Open or Closed, and
 if newNode.CostFromStart <= NewCost {
 not an improvement, so continue
 }
 else {
 //new node is better
 NewNode.parent = Node
 NewNode.costFromStart = newCost
 NewNode.costToGoal = \
 PathCostEstimate(NewNode.loc, GoalLoc)
 NewNode.totalCost = NewNode.CostFromGoal
 + NewNode.CostFromStart
 if (NewNode is in Closed) {

 remove NewNode from Closed
 }
 if (NewNode is in Open) {
 adjust position in Open
 }
 else {
 push NewNode on Open
 }
 }
 push Node onto Closed
 }
 }
 return failure - no path
}

Essentially the search algorithm determines the cost to
reach the goal through Pythagorean Math (see the
PathCostEstimate() handler in the 2-D engine). If the
current (start) tile is not the goal tile then a path must be
created (otherwise just move to the tile using standard
scrolling methods). In constructing a path, the system
clears priority queues Open and Closed, and adds follows
the pseudocode above from start to finish. It then uses the
construct_path() handler to go backwards from the goal
grabbing the location of each map square in the path by
following the parent pointer in each Node. We are left
with a list of map locations that constitute the shortest
path to a target.
 Generally speaking, the paths produced are not
aesthetically pleasing, in that they require the character to
travel to the center of each tile on the path list. Rabin [18]
makes some optimizations to this path, as does Kawick
[4]. I have used a process here not unlike traditional
raytracing, but without the rendering component. It is
inherently useful to use a ‘fake’ character and move from
the first two third points, looking for crossing tiles that
have a movement value of 0 (ie, a wall). If we do not find
such a wall, then the second point in the path list is
irrelevant, as we can travel from first to third without
obstruction. This process is repeated cascading down the
entire point list. Note that if a wall is encountered, it is
pointless to trace the rest of this ray. It is also generally
unnecessary to trace the ray with a great level of detail
with regard to sampling. While sampling every single
sub-pixel unit would provide the greatest accuracy, it is
desirable to sample only every few pixels to preserve real-
time performance. At the same time, all of this occurs
before any movement is made to the screen, so a very
small delay is acceptable, where a glitch in animated
frames would not be allowed. The relevant handlers in
the code are the constructPath and cullPath
handlers.

3.6 PATH CULLING AND PLOTTING
THROUGH BEZIER CURVES

This discussion is currently unfinished, and will be
published in a separate paper. This work is currently
implemented in the original (2-D) engine, and can be
transported to the 3-D implementation with relative ease.
For more information on the use of splines in the

Shockwave 3D environment, see Barry’s recent work on
the subject [12], and use A* pathing to construct the
control points of the curve. The Path script implements
a 2D solution to the problem of angular paths by using a
spling object to compute a smoother path.
 The idea is a simple one, which is basically to
use the output of the A* slgorithm as a basis for a spline.
The straight pathing algorithm will produce a set of
points. Once the points are fed into the path objects list of
points, the setHandles method is called to move the
handles attached to those points to produce the smoothest
possible bath. Because this sometimes then causes the
path to ‘loop over’ areas filled by obstacles (that had been
previously culled), the function ‘moves’ the handles
slightly to produce more visually appealing results
(through a very non-generic process, which should be
modified if any of the major engine variables are
changed). The redistribution of target points over the
spline is based on the work of Will Turnage which was
published at DOUG [19], and has only truly been
modified for the reasons noted above, and to offer object
encapsulation. By using splines, or some other smooth
path equation such as a NURBS curve, it is possible to
simulate a much smoother character path, although it
should be noted that it is still not perfectly realistic.
Ideally, some random generator would add noise to the
target points to produce ambiguity, as well as other
physical simulation to further enhance this strategy.

4 SCROLLING IN A 3D WORLD

4.1 REPURPOSING THE 3D VIEW
The idea of using a 3D graphics system to represent an
Isometric world is at once both elegant and overkill.
Overkill in the sense that the capability exists to
significantly extend the functionality of the world beyond
the 2D projections, and elegant in the problems that it
solves. The first step in transitioning from a 2D to a 3D
system is to reform the logic of a simple 2D engine
scroller into a 3D world. This can be most easily seen in
the shift from screen based x/y coordinates for character
movement to world based x/z movement (assuming that
the y Axis is vertically oriented as it is in most modern 3D
systems). Second, instead of using 2D graphics as ‘tiles’
the 3D engine will use geometry to represent its tiles, and
will shift them around and move them much like 2D
scrollers moved and shifted graphical elements. To see
the simplicity of a system like this, change the
UseTerrainMap flag to ‘FALSE’ and restart the
engine. Use ‘q’ to switch to wire-frame, and it becomes
apparent that the world is in essence a series of tiles
perfectly aligned to form a seem-less surface, much like
2D tiles over a screen.

In the 3DISO engine, in the ‘Helper Scripts’
member there exist tools to create these geometric tiles,
consisting of 4 faces based on 5 points. It should be noted
that this engine uses 4 faces per tile to gain more points to

sample elevation, but if the goal of the engine is only to
emulate 2D features it is possible to use a maximum of 2
triangular faces to recreate a square tile. Also of note is
that this engine stores the points for each face
independently of all others, which is done for simplicity at
the expense of both speed and data normalization. A
more complete approach would be to store point data in a
completely separate array of vertices, and to use the face
order pointers present in the geometry to reference this
array such that different faces in different objects point to
the same vertex in the same array of vertices. This is
possible using VertexLists in DirectX, however the
Shockwave 3D object constructs lock a given vertex list
and faceList to a given model for simplicity. In fact, even
in the map this engine stores redundant information
because it stores 5 height values for each element in the
map, which correspond to the y values of the 5 vertices in
the tile mesh when and if that map cell is referenced for a
given tile. It is only necessary, however, to store the
center of each tile: the edges, because they are shared, are
redundant for every other square. Indeed, if optimized the
engine would only store all 5 values in the map for every
other square on the first row, and store the bottom 2 for
every other square on all remaining rows, offsetting every
other row by one column to reduce the redundancy of
storing identical information to 0.

In any event, the scripts MakeTileMesh(),
MakeTileModel(), and MakeTileList()
manipulate the standard S3D member functions to create
a series of tiles that form a solid ‘grid’ of landscape
extending just beyond the edge of the viewable area. It
should also be noted that it is very important to lock the
maximum distance of the camera, as it would be possible
to see the ‘edges’ of the land if the user can dolly the
camera back far enough, and this is generally undesirable.

The true elegance of recreating the Isometric view
in full 3D environments is twofold: (a) it is possible to
capitalize on 3D hardware found in modern graphics
cards to allow for faster drawing, and (b) because the
geometry can be viewed through a camera the engine can
use a square tile, and bound it as a normal, square tile
(which is simple), but manipulate the camera to view it
from an Isometric perspective (which is how the 3DISO
engine is initialized before user manipulation of the
camera). Indeed, the bounding algorithm for tiles in the
3DISO engine has more in common with a simple
smooth-scrolling engine as opposed to an Isometric
projection, it is basically a re-mapping of the XY screen-
space into the XZ world-plane (see figure 19).

if rx > halfTileSize then
 x = x - gTileSize
 gCurrentPosX = gCurrentPosX - 1
 if rz > halfTileSize then
 z = z - gTileSize
 gCurrentPosY = gCurrentPosY - 1
 else if rz < -halfTileSize then
 z = z + gTileSize
 gCurrentPosY = gCurrentPosY + 1
 end if

 else if rx < -halfTileSize then
 x = x + gTileSize
 gCurrentPosX = gCurrentPosX + 1
 if rz > halfTileSize then
 z = z - gTileSize
 gCurrentPosY = gCurrentPosY - 1
 else if rz < -halfTileSize then
 z = z + gTileSize
 gCurrentPosY = gCurrentPosY + 1
 end if
 else if rz > halfTileSize then
 z = z - gTileSize
 gCurrentPosY = gCurrentPosY - 1
 if rx > halfTileSize then
 x = x - gTileSize
 gCurrentPosX = gCurrentPosX - 1
 else if rx < -halfTileSize then
 x = x + gTileSize
 gCurrentPosX = gCurrentPosX + 1
 end if
 else if rz < -halfTileSize then
 z = z + gTileSize
 gCurrentPosY = gCurrentPosY + 1
 if rx > halfTileSize then
 x = x - gTileSize
 gCurrentPosX = gCurrentPosX - 1
 else if rx < -halfTileSize then
 x = x + gTileSize
 gCurrentPosX = gCurrentPosX + 1
 end if
 end if

Figure 19: Complete Bounding Algorithm for Isometric Tiles in
a full 3D environment (note that ‘Isometric’ is now arbitrary,
and refers only to a camera position).

4.2 SCENE OBJECTS AND OBJECT
HEIRARCHY

Given that the engine generates a series of models within
the 3D cast-member, each of which uses a single and
distinct mesh (we could reference the same mesh
repeatedly if it is not deformed for elevation mapping,
which would further increase performance), it is now
inherently very useful to think of how best to store these
objects for use. There are 3 requirements that the 3DISO
engine places on the geometry used: first, it must be easy
to transform all of the tiles as a unit, because they will be
transformed on the XZ plane with every character
movement. Second, they must be able to be textured
independently so that the engine can capitalize on the
strengths of 2D engines and reuse the same bitmap
wherever possible. And third, the objects should allow
their vertices to be reset in real-time so that the y value
can be manipulated from map information to produce
terrain.

The first two of these criteria are relatively simple.
Any model can be textured independently by definition,
so that is a non-issue provided that each tile is represented
by a single model within the S3D hierarchy. Second, in
order to move all of the tiles cohesively as a unit there are
many options. The first of which is to loop; through all of
the tiles and transform each one independently. While
this is possible, this is generally fairly slow, and not ideal
at the speed with which interpreted code runs. The

solution used in the code base provided is to create one
additional tile, perfectly centered under the character at
startup known as the Bounding Tile. All other tiles are
the, after initialization and being moved into position in
the grid, are set as children to this tile in the scene
hierarchy. After this is done, any manipulation of the
Bounding Tile is applied not only to that tile, but to all of
it’s children, which in this case applies the transformation
to all the tiles in the scene. Thus, instead of calling each
tile upon movement, the character script can instead
simply execute call(#translate, gBoundingTile,
(x),0,z, #world), with the effect of moving all tile
(x,z) on the XZ plane relative to the center of the world.

The third requirement, however, is difficult at best.
In order to rapidly manipulate each vertex of each mesh
of each tile in real time, this engine does not use the
recommended methodology of dealing with vertex level
transformations in 3D cast members. Specifically, this
engine does not employ the use of a #MeshDeform
modifier, as this was significantly slower when tested
against the method that was employed. Instead, this
engine stores for each ‘tile’ an object of type ‘tileRef’
which holds 2 pointers, the first a pointer to the Model,
and the second a pointer to the mesh resource. When the
RenderWorldFromMap handler loops through each
tile to represent squares in the map, it sets the texture of
the model through the model pointer, and manipulates the
vertices of the mesh directly through the vertexList
obtained through the mesh pointer (instead of accessing
the vertexList created through applying a meshDeform
modifier to the model resource). This optimization was
responsible for an approximate speed gain of 20%, while
the exact reason for this increase remains unknown. One
can only assume this is due to the extra object structure
that the meshDeform modifier places between the handler
call and the eventual vertex transform, however this is
speculation.

A further optimization would be to remove the use
of the two-dimensional array, and to move the texturing
and vertex adjustment calls to a method inside the tile_ref
object. This would then be called by using the optimized
#call symbol, and passing a flat array consisting of all the
tile objects in the scene. The speed increases between a
flat list and a multi-dimensional array of objects is well
documented both by this author [10] and many others
[11]. The structures are left as is in this incarnation, but
will likely change in future releases.

4.3 CAMERA LOCKS AND THE CHARACTER
CENTRIC VIEWPORT

Once the keyboard is appropriately mapped into
daemon-driven controls, moving the camera to change the
view of the world becomes a relatively simple exercise,
with one small flaw. Because the engine does not use a
two-dimensional system to display the isometric
projection, it is free to change the viewpoint and
decidedly ignore, in large part, all of the issues associated
with classical isometric implementations. There are no
corresponding issues with regard to perspective correction

and lens simulation as this is (for the most part) built into
the Shockwave3D environment.

 There are, however, two issues that deserve
attention, one of which involves setting limits on the
minimum and maximum height of the camera, and the
slightly more complex issue of creating a rotation
hierarchy to avoid “gimble-lock”. The minimum and
maximum value scenario is easily solved if one considers
each ‘move’ of the camera on the Y (up) axis as a positive
or negative increment to a global counter. Setting
minimum and maximum values on this counter then leads
to an effective bounding mechanism that is quicker than
actually querying the world for the location of the camera
in world-space (although this increase is, for the most
part, marginal unless there is continuous camera
animation).

The rotational problem is slightly more complex,
and attention should be paid to the cause of this difficulty.
If a camera can be said to ‘point at’ the origin from a
particular point in space, that camera will be unable to
rotate correctly around the origin if it has already been
rotated a value around the Y (up) axis that is not a
multiple of 90 degrees. (Actually, this problem has
nothing to do with the origin itself, it can be reproduced in
any quadrant using any object that rotates around a point
that is not its own center of reference). This can be seen
if a camera is, say 200 units towards the viewer along the
Z axis, and 100 units ‘high’ on the Y axis. This camera is
rotated to point at the origin (0,0,0). Such a projection
would, in fact, produce the standard isometric viewpoint
described earlier. Now assume that the desired movement
scheme is that of our world, meaning that the user is free
to rotate around the Y-axis to ‘face’ any direction, and
free to rotate around the world-space X-axis to ‘tilt’ into
either a bird’s-eye view or a view in which the angle is
very close to the ground plane. It’s easy to tilt at first,
because the camera is exactly on the world-Z axis, and so
to tilt we rotate around the world-X. If, however, the user
has rotated the camera around the Y-axis, we now need a
vector perpendicular to the facing direction of the camera,
and horizontal to the ground plane. The world-X or
world-Z axis no longer fits this description, and rotating
around this axis is now incorrect and produces
undesirable results. In fact, this exact scenario is the
classic description of ‘gimble lock’ as originally
discovered, which is the underlying inability of vector /
matrix multiplication to solve this problem directly.

There is, however, an incredibly simplistic solution
that exists in many animation packages (Maya, Max, etc)
and is duplicated here. The idea is to represent a camera
not with one object but with 2, a source and a target. The
camera source is the point used for vertex projections, but
the target is used for rotations, the source receives the
same transformations as the target, relative to the target.
If this target is placed at the origin, and rotated about the
Y axis the same number of degrees as the camera source,
then when it is desirable to tilt the camera source, the

camera source can be rotated about the X-axis of the
camera target, not the world. This produces the correct
transformation on the source point, and the projection is
correct. In most modern systems, this is implemented by
a 2-node hierarchy, assuming that transformations to the
top of a hierarchy are perpetuated to the end, relative to
the start node. Thus, in most animation systems, it is
possible to create a camera target and a camera, and to
make the target the ‘parent’ of the camera. Often, this is
done automatically within the UI and the animator can
simply animate them together or separately.

This system is implemented in the ISO3D engine by
creating a ‘Dummy Object’ (which is how animation
systems implemented this solution before pre-built
camera targets). This dummy is placed at the origin and
rotated in unison whenever the camera rotates around the
Y axis. Whenever the camera ‘tilts’ up or down relative
to the ground plane, it rotates relative to the X-axis of the
dummy, this avoiding the traditional gimble-lock issue.

4.4 HEIGHTMAPPING AND TERRAIN
GENERATION

The engine presented here uses a simple image to insert
into the standard map values for the heights of each point
read. This is accomplished by the DrawMapFrom
Image() and GetHeightFromPixel handlers
shown in Figure 20. The first handler loops through all of
the pixels in the image in such a way that the map will
store a square for every 2 pixels in the image. Thus a
300x300 image produces a 150x150 tiles map. The
middle of this tile is computed by simply averaging the 4
corners. The actual height is computed based on the color
of the pixel in an incredibly simple fashion (a more
correct reader would convert the image to grayscale
before computing the height from the pixel). All the pixel
reader does is add the red green and blue channels, take
the average value from 0-255 and return that value over a
predefined constant divisor. This divisor can be thought
of as a global scale, it has the effect of setting a maximum
height for the land values to which all other values are
scaled.

on DrawMapFromImage whichMember
 repeat with x = 1 to D3DISO[#gMapSizeX]
 repeat with y = 1 to D3DISO[#gMapSizeY]

 a = GetHeightFromPixel(whichMember, x,y)
 b = GetHeightFromPixel(whichMember, x+1,y)
 c = GetHeightFromPixel(whichMember,x+1, \

y+1)
 d = GetHeightFromPixel(whichMember,x,y+1)
 e = (a + b + c + d) / 4
 D3DISO[#gMap][x][y].tHeight = [a,b,c,d,e]

 end repeat
 end repeat

end DrawMapFromImage

on GetHeightFromPixel whichMember, x, y
 daImage = member(whichMember).image

 c = 0
 c = daImage.getPixel(x,y)
 if c <> 0 then

 c = c.red + c.blue + c.green / 3
 end if

 return c / divisor
end getHeightFromPixel

Figure 20: Method(s) to read height from image and plot terrain
in map structure.

4.5 CHARACTER MOVEMENT AND SURFACE
ALIGNMENT

It is perhaps rather odd to have a section entitled
‘character movement’ when the character does not
actually ‘move’. Nonetheless, it is the character script
that contains the move methods and so in essence the
character moves and then transfers its movement to the
ground plane as per the discussion in section 2.1. The
movement script is fairly simplistic without aligning the
bounding box to the underlying ground-plane, but grows
in complexity as features are added. The basic movement
script involves the following steps: (1) move the
character, (2) record the movement, (3) cancel out the
movement applied in (1), and (4) apply the inverse of the
movement to the bounding tile (which is the parent of all
other tiles in the scene). It is possible to avoid steps 1-3
and simply apply the transform as in (4), but for the sake
of logical completeness, the engine calculates the
movement using the move / measure / un-move pipeline.
This will have ramifications later in the discussion.
 The next issue associated with movement is
alignment. The theory of how to do this fairly
straightforward and involves the following steps: (1) fire a
ray down from above the object and see what face is hit
(which is accomplished using the #detailed flag in
modelUnderRay), (2) Rotate the model to point towards
the new point, and (3) elevate the model to sit squarely on
the groundplane. More detail about this process is
provided in 5.3.
 Movement then, follows the following
pseudocode as a basis for driving the entire engine:
move {

 // (1)calculate new x and z based on current x, z, angle and
 speed.

 //(2) at the loc (x’ z’), fire a ray into the ground and retrieve
 world coordinates (rx, ry) (could be different as I use a 2D
 projection for movement)
 //re-zero character movement

 //(3) wrap rx and ry if necessary for tile bounding using square
 tile algorithm.

 //(4) if necessary re-reference from the map (if a ‘wrap
 occurred above’)

 //(5) apply the inverse of (x, z) from (1) to the bounding tile

 //(6) use the result of the ray fired in (2) to figure out what is
 underneath the character, namely height and normal vector

 //(7) Set the character bounding box to the height returned in
 (6)

 //(8) Align the character bounding box to the normal of the
 surface returned in (6)
}

This function then effectively drives the entire engine
with regard to movement. There are additional comments
on implementation in the Character3D object script.

5 OPTIMIZING THE ILLUSION

5.1 LIGHTING
The lighting that exists in the sample is relatively simple.
Essentially there are two main lighting values, both of
which are setup in startmovie. The first is an ambient
light value that provides a default level of visibility. The
second is a spotlight that shines down from a position
directly atop the character’s center (direction = -y). This
light is the kept at a constant height throughout the
character movement operations such that it doesn’t
‘bounce’.

To better frame the character, this light can either
be rotated such that it shines on the character from the
front, which created a heroic appearance, or so that it
shines from the characters backside, which leaves the face
always in shadow and can create a sense of mystery. The
important point it that the light is in the center of the
world, which allows the extreme foreground to fade into
darkness. This aids the overall illusion of depth because
it allows the viewer to recognize changes in terrain
elevation with ease.

5.2 CAMERAS, FOG AND CLIPPING PLANES
The basics of the camera control system and the
associated issues are described in section 4.3. In addition
to the issues presented there, it deserves mention that the
entire illusion of the ‘space’ depends on some specific
‘tricks’ or optimizations. First, the camera should not be
allowed to descend below the ground. The demo engine
presented here solves that problem in a simplistic fashion
– it manipulates the divisor described in section 4.3 to
make sure that the land scale can never exceed the
minimum value for camera height. It is cheap, but
effective.
 The second ‘trick’ to keeping the illusion of
infinite space alive is fog. The fog (or lighting depending)
is integral to the illusion in that the user cannot be
allowed to see far enough into the distance to see the
shifting edges of the tiles (you can see why this would
break down in wire-frame mode). There are several ways
to make sure that this viewpoint is maintained, but the

standard methodology that is used in Isometric
projections (which is to simply tile beyond the top of the
screen) does not apply, because as the camera approaches
the ground plane the number of tiles to fill the view-port
grows exponentially. Indeed in theory a camera sitting
exactly on the ground-plane would need an infinite
number of tiles as the representation in the view-port
would never grow beyond a horizontal line.
 The final ‘trick’ is not one that developers in
S3D really have control over, but should be mentioned
anyway for the sake of completeness. The idea of
clipping planes was once very important to developers of
DirectX / OpenGL enabled applications. Much of this has
been hidden from the developer in more recent versions
of the API’s (Microsoft’s DirectDraw was famous for
clipping annoyances). S3D seems to encapsulate the
clipping mechanism within the S3D cast member (ie it is
impossible to draw outside of it) although it is left
unanswered from the documentation whether or not faces
that are not in the view-port are still included in the
rendering pipeline. Certainly faces that traverse the edge
of the window are clipped and rendered correctly, so one
assumes that the underlying structures from the API are
safely incorporated, and that this optimization is at work.

5.3 COORDINATE SPACE CONVERSIONS AND
OTHER DIFFICULTIES
This engine uses world coordinates rather than

screen coordinates for measuring character movement
relative to the larger map coordinate space. As such, the
‘scale’ of the world is a factor, and it should be noted that
changing the overall scale of the world is possible if
bigger or smaller tiles are desired. In using coordinate
space, however, a number of issues arose, which are
briefly dissected here:

One problem that this engine illustrates is an
underlying annoyance with the S3D implementation of
PointAt(). This method will apparently fail when telling
an object to point at a position along a vector that it is
already pointing at (ie requires no change). This was
exceedingly frustrating in getting the character bounding
box to align with the landscape. The eventual solution
was to rotate the character a bit before the pointAt method
was used to align the box to the surface. Even then
inconsistencies occurred, and so eventually a slightly
more complicated scheme was used, and is commented
inside the Character3D object script.

A second issue with the use of world coordinate
space became clear when I originally set out to convert
the mouse interaction style from the 2D to the 3D
environment. The ability to project the tile-space into 2D
columns and measure against a bitmap is completely void,
both because the angle of the camera is now variable, and
because tiles in the distance do not project identically to
tiles in the foreground. To avoid this issue, the new
mouse interaction code makes heavy use of the

ModelUnderRay construct of the S3D environment.
Essentially the mouse fires a ray into the scene and
returns what is hit, and the handler parses that list until it
finds the first tile. There are some inconsistencies with
this approach as users cannot click ‘behind’ objects, but
other than that it should provide a suitable base
implementation for basic point and click navigation.

5.4 MOVEMENT AND DAEMONS
Because of the high cost of calculation in engines such as
these with regard to movement, a number of approaches
have coalesced into a proposed ‘best practice’. First, it is
unlikely that the engine would perform well if each
calculation was performed based on individual key
events. This is due both to the fact that repeated key
events are thrown at decidedly different rates by different
operating systems [13], and that it is generally smoother
and more acceptable to use a buffer to store input, and to
check that buffer once per game cycle. This idea of key
buffering has become a standard practice in the gaming
industry for precisely that reason [14], without it players
could capitalize on a tight loop by moving very rapidly to
slow enemy AI or other simultaneous action. This
engine makes use of a modified version of the
EvilKeyDaemon code, which was made publicly
available by Scott@Evilfish [15].
 Alternately, if MOVEMENT_STYLE is defined as
1, then the GameLoop will call methods of the
Character3D script that invoke a point and click driven
interface. In either event, the character is allowed one
movement cycle per ‘frame’, which in addition to
producing animation, makes it possible to call other
routines in sequence without the player outstripping the
engine. See comments in source code for more detail.
 It should also be noted that this engine operates
entirely through the use of Lingo timeout objects, without
regard to more traditional frame lopping mechanisms.
This is primarily due to the fact that prepareFrame(),
EnterFrame(), and ExitFrame(), are involved
directly with the sprite engine inside Director, while the
Shockwave 3D sprite is not. Because every effort has
been made to continue to allow the S3D World to operate
DirectToStage, it is pointless to call handlers that
redraw either the sprite (which is unnecessary) or attempt
to layer the world sprite relative to others. The speed
increase in using timeout objects was incredible, but it
should be noted that this is primarily due to the fact that
the world is drawn when needed, based on the time value
in the timout object. It is very likely that slower machines
would suffer from this strategy while machines at the
higher end will benefit dramatically [16]

6 CONCLUSIONS
These engines are expressions of both success and

failure. On the one hand, they represent the possibilities
of what Lingo is now capable of, and should provide a
basis for more optimized solutions and Shockwave
Games. On the flip side, they also speak to the level at

which developers must understand the tool in order to
create fully featured engines, and it is non-trivial. It is
unclear, as this work continues, whether or not this is a
better approach than a more ‘low level’ language.
Nonetheless, it is my belief, after constructing these
samples, that S3D is capable of creating game engines
that were previously unavailable to the shockwave crew,
but are (most importantly) easy to deliver on-line.
 This cannot be overstated. As of this writing,
most game engines are developed in C/C++ environments
that are highly optimized for a specific environment (ie
Win32, MacOS, etc). Lingo and Shockwave can
transcend all of that, developing on a base of code that is
already available (the shockwave runtime engine) [aside:
we can only hope that S3D will be available for Linux /
UNIX in the near future]. On one hand, this is offensive
to the larger game community because it is not as highly
optimized and less of a ‘real’ engine development
platform. On the flip side, this engine is a first step
towards creating environments that can offer game play
similar to current C/C++ games, which is my ultimate
aim. If a system could be developed in Lingo it would be
highly desirable from a distribution point of view because
of the ease with which Shockwave deploys to multi-user
web environments – and while it is still unclear how far I
can push it, I am optimistic after this initial test of a world
system.

7 FUTURE WORK
This engine is still very much in its infancy. The pathing
and spline code still needs to be ported from the original
2-D implementation. Most notably, the character prop
needs to be replaced with a boned model that supports key
sframe animation similar to the ‘Terrain Demo’ created
by Tom Higgins at Macromedia. This should not be
tremendously difficult, and has been tested (though not
yet published). The map needs to be generated from a
proper file format instead of the simplistic array used in
this demo, and should reduce it’s dependency on the
string datatype (using integers to reference a cast
sequence springs instantly to mind). Additionally, the
files should be capable of being dynamically loaded and
unloaded, similar in style to the Maze demo published
previously by this author. Such work will go a long way
towards extending the usefulness of this engine.
 Beyond this, the ‘holy grail’ of this engine will
be the inclusion of network support and multi-player
functionality. This module will include support for
character creation, modification, deletion, inventory
tracking, world modification, map-tracking, etc.
Additionally and AI unit will be needed to generate
appropriate NPC’s and control them as appropriate. Once
this base is established, with appropriate database support,
it should be possible to begin building a game, it is my
dream to transform this work into an eventual multi-
player RPG.

Acknowledgments

This work stands on the shoulders of the
discussion that are regularly presented on the Dir-Games-
L list, as well as my peers at the Rochester Institute of
Technology. In no particular order I would like to thank:
Barry Swan for his tireless efforts to push Lingo beyond
it’s limits, NoiseCrime for publication of an excellent set
of imaging materials, C. Leske and Tom Higgins of
Macromedia for both their publicly available samples (the
3-D normal alignment of my character is taken almost
directly from Higgins prior work on the subject) and their
support of the DirGames community, Darrel Plant for
tirelessly promoting DOUG and for editing and
publishing my work there, Jeff Sonstien and Steven Kurtz
for being decent people to work with and for sitting at my
whiteboard for countless hours trying to figure this stuff
out, and finally Scott Southworth at Evilfish for providing
snap-in code for tons of common gaming problems
(which is just a cool idea, period). So needless to say this
engine, while still in its infancy, owes a lot to a lot of
different people and their influences on my own work.
Again, thank you all.

References
[1] Phelps, Andrew M. (2000) Perspective Based Lingo
Mazes: The Director Dungeon Crawl. The Director-
Online User’s Group. Online: http://www.director-
online.com/accessArticle.cfm?id=958.
[2] Pazera, Ernest. Andre Lamothe Ed. (2000). Isometric
Game Programming with DirectX 7.0. Prima Tech’s
Game Development Series. pp 300-325. Roseville,
California: Prima Tech Publishing.
[3] Nonoche. (2001) Introduction to Tile Based Scrolling.
Online: http://www.nonoche.com/imaging/en/index.html.
[4] Kawick, Mickey. (1999) Real-Time Strategy Game
Programming Using MS DirectX 6.0. Plano, Texas:
Wordware Publishing, Inc.
[5] MIT Epistomology Group, Media Lab, Massechusets
Institute of Technology. (2001) Introduction to StarLogo.
Online: http://el.www.media.mit.edu/groups/el/Projects/
starlogo/index.html.
[6] Kurtz, Steven. Turtle World. Forthcoming. Featured
Article in Using Director – Director Online. Online:
http://www.director-online.com/
[7] MIT Epistomology Group, Media Lab, Massechusets
Institute of Technology. (2001) Introduction to StarLogo.
Online: http://el.www.media.mit.edu/groups/el/Projects/
starlogo/index.html.
[8] Forman, Charles. (2000) Isometric Views in Director:
Theory and Game Application. Online: http://www.
director-online.com/accessArticle.cfm?id=952

[9] Morrison, Michael. (1996). Teach Yourself Internet
Game Programming with Java in 21 Days. pp 122-123.
Indianapolis, Indiana: Sams Net.
[10] Phelps, Andrew M. (2001) Lingoland: Simple 3D
Terrain Simulation in Lingo. The Director-Online User’s
Group. Online: http://www.director-online.com/access
Article.cfm ?id= 983
[11] Swan, Barry and Noisecrime. (2000). Discussions
on the Dir-Games-L mailing list. Thread titled Basic
Introductions and Optimization Question. List hosted at
University of Georgia.
[12] Swan, Barry. (2001) Director 8.5 Demos: Following
Splines. Online. http://www.theburrow.co.uk/d85 /.
[13] Sean, Boyle. (2001) Chantara: A Multi-User
Networked Role-Playing Game. Rochester Institute of
Technology, Master’s Thesis. Unpublished.
[14] LaMothe, Andre. (2000). Tricks of the Windows
Game Programming Gurus. p17. Indianapolis, Indiana:
Sams Net.
[15] Southworth, Scott. (2001) Evil Key Daemon.
Online. http://www.evilfish.org/arts/keydaemon.html.
[16] Catanese, Paul. (2001) Director’s Third Dimension:
Fundamentals of 3D Programming in Director 8.5. pp
596-600. Indianapolis, Indiana: QUE.
[17] Stout, Bryan. (2000) Mark DeLoura ed. The Basics
of A* for Path Planning. Game Programming Gems. pp
264-271. Rockland, Massechusets: Charles New River
Meida Inc.
[18] Rabin, Steve. (2000) Mark DeLoura ed. A* Aesthetic
Optimization. Game Programming Gems. pp 264-271.
Rockland, Massechusets: Charles New River Meida Inc.
[19] Turnage, William. (2000) Vector Shapes as
Animation Tools. Dictor Online Users Groups (DOUG).
Online:http://www.director-online.com/accessArticle .cfm
?id=302
Annotated Bibliography
The following works were (in addition to those listed in
the formal references) instrumental to this work and
should serve as an appropriate listing to those interested
in the work presented here. Notations have been made as
to the general category of the material where appropriate.
[ST] Generic Scrolling Theory; [ISO] 2D Isometric
Theory; [L] Lingo based 3D Code; [M] Mathematicsfor
2D and 3D Transformations; [S3D] Shockwave 3D.
1. Edgerton, P.A & W.S. Hall. (1999) Computer

Graphics: Mathematical First Steps Essex, England:
Prentice Hall. [M]

2. Foley , James D., Andries van Dam, Steven K.
Feiner, John F. Hughes. (1987, 1996 2nd revised
printing) Computer Graphics Principles and
Practice – 2nd Edition in C. The Systems
Programming Series. Washington, DC: Spartan
Books.[M]

3. Gamedev’s Isometric Resources Section (multiple
authors). Online: http://www.gamedev.net/reference/
list.asp?categoryid=44. [ST][ISO][M]

4. Gross, Phil and Mike Gross. (2002) Macromedia
Director 8.5 Shockwave Studio for 3D: Training
From the Source. Berkeley, California: Macromedia
Press.

5. Kawick, Mickey. (1999) Real-Time Strategy Game
Programming Using MS DirectX 6.0. Plano, Texas:
Wordware Publishing, Inc. [ISO][ST]

6. Kurtz, Steven and Andrew M Phelps. Vector Based
Life Forms, a 3D Engine Based on Turtles.
Forthcoming. Featured Article in Using Director –
Director Online. Online: http://www.director-
online.com/ [L][M]

7. Swan, Barry. (2000) T3D Engine and Iso Demo.
Online. http://www.theburrow.co.uk/. [L] [ISO]

8. Swan, Barry. (2001) Director 8.5 Demos. Online.
http://www.theburrow.co.uk/d85 /. [L][S3D]

9. Allenson, Baumann et al. (2001) Director 8.5 Studio.
Olton, Birmingham: Friends of Ed. [L][S3D]

10. van der Sterren, William. Terrain Reasoning for 3D
Action Games. CGF-AI Conference Proceedings:
GDC 2001.[M][ST]

	DEMO FILES AND WORLD OVERVIEW
	TUTORIAL FILE SETUP
	CODEBASE OVERVIEW

	TILE ENGINES AND SCROLLING THEORY
	THE ROOTS OF SCROLLING THOERY
	SCROLLING IN TWO DIMENSIONS SIMULTANEOUSLY
	PARALAX AND OTHER ENHANCEMENTS

	ISOMETRIC LANDSCAPES
	DERIVATION OF THE ISOMETRIC VIEW
	IMPLEMENTATION OF THE ISOMETRIC VIEW
	BOUNDING OF ISOMETRIC TILES AND MOVEMENT DIFFICULTIES
	SECREEN TO MAP AND MAP TO SCREEN
	TRADITIONAL PATHFINDING
	PATH CULLING AND PLOTTING THROUGH BEZIER CURVES

	SCROLLING IN A 3D WORLD
	REPURPOSING THE 3D VIEW
	SCENE OBJECTS AND OBJECT HEIRARCHY
	CAMERA LOCKS AND THE CHARACTER CENTRIC VIEWPORT
	HEIGHTMAPPING AND TERRAIN GENERATION
	CHARACTER MOVEMENT AND SURFACE ALIGNMENT

	OPTIMIZING THE ILLUSION
	LIGHTING
	CAMERAS, FOG AND CLIPPING PLANES
	COORDINATE SPACE CONVERSIONS AND OTHER DIFFICULTIES
	MOVEMENT AND DAEMONS

	CONCLUSIONS
	FUTURE WORK
	
	References

