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Abstract 
 

This paper represents an overview of recent work 
in the Shockwave 3D environment that seeks to 
implement a ‘scrolling’ game engine in a truly 
3D environment.  Specifically this engine seeks 
to adapt to 3D the following 2 axioms that are 
the basis of optimization in Isometric Game 
Engines: (a) It is possible to simulate a very 
large world by using a map of the world-space in 
memory which does not involve using either 
images or geometry, and (b) any tile that is more 
or less identical can use the same geometry and 
texture map, which further reduces the size 
needed to represent the world as a whole. 
In explanation of the engine presented here this 
text also provides background information on 
general scrolling theory and in particular the 
Isometric perspective as appropriate, along with 
what is intended to be an informative literature 
review of recent relevant material.  In addition 
this engine is presented with the background 
Isometric code-base that was used to design a 
similar engine in a completely 2D environment, 
as a point of reference for developers hoping to 
adapt existing 2D solutions to more robust 3D 
environments.  Collision detection, path-finding 
algorithms, and path culling are also discussed as 
appropriate.  Both of these engines are presented 
in a primarily un-optimized form to aid in ease of 
understanding.  Optimized versions of the same 
engines will be made publicly available. 

1 DEMO FILES AND WORLD 
OVERVIEW 

1.1 TUTORIAL FILE SETUP 
To explore what a 3D scrolling world engine does, the 
first thing to do is to examine one so that one can have a 

frame of reference as to the type of environment that is 
being simulated.  To begin, open the ‘3DISO_ENGINE_ 
RELEASE_XX’ file associated with this paper, and start 
the movie.  After a few moments of initialization and 
terrain generation, you should see something similar to 
the screenshot below (see figure 1).   Use the forward (up) 
arrow key to move the character (represented in early 
versions of this work as an un-textured cube) around the 
world, and press the right and left arrow keys to spin 
(pressing the right and up key simultaneously will bank 
right, and the left and up arrow combination will bank 
left).  Also, use the ‘q’ character key to cycle through the 
rendering modes.  Pay special attention to the wire-frame 
mode, as this is the mode that essentially gives away the 
illusion with regard to the inner workings of the engine. 

 

Figure 1:  3DISO Engine in action. 
The character is initialized at engine startup facing 
northwest, with a camera position that exactly simulates a 
standard isometric projection (see section 2.X).  Use the 
‘w’ (up), ‘a’ (left), ‘d’ (right), and ‘x’ (down) keys to 
manipulate the camera into various views.  Note that the 
view will remain centered on the character representation, 
and that the engine marks some boundaries with regard to 
camera movement (it is not possible, for example, to 
move the camera below the ground-plane). 



1.2 CODEBASE OVERVIEW 
Table 1: Engine Parameters and Tuning Variables 

VARIABLE PURPOSE 
UseTerrainMap Tuning Variable that turns on/off 

functionality to read terrain height from 
grayscale images. 

FogEnabled Tuning Variable to turn on/off fog. 

LightsEnabled Tuning Variable to turn on/off lighting. 

gWorld Pointer to the Shockwave 3D member 

gTileSize Size, in pixels, of the edge of a tile (tiles 
are assumed square) 

gNumTilesX Number of tiles to use in on the X axis, 
preferably an odd number. 

gNumTilesY Number of tiles to use in on the Z axis, 
preferably an odd number. 

gMapSizeX Width of map array in X direction. 

gMapSizeY Width of map array in Y direction. 

gBackColor RGB color value of background. 

gFogColor RGB color value of fog (if enabled). 

gLightColor RGB color value of main scene light. 

CharacterHeight Y Value of the characters’ bounding 
box. 

CharacterWidth X Value of the characters’ bounding 
box. 

CharacterLength Z Value of the characters’ bounding 
box. 

CharacterSpeed Speed of the main character, must be 
less than one-half gTileSize or bounding 
algorithm will fail. 

LightHeight 
Offset 

Y value describing the height of the light 
source above the characters bounding 
box. 

gRotSpeed Number of degrees camera rotates each 
frame when moved. 

gRotHeight Maximum number of rotations allowed 
around origin in vertical direction. 

gRotMin Minimum number of rotations allowed 
around origin in vertical direction. 

TerrainMap 
Member 

Name of the member used as the 
grayscale image for terrain generation if 
UseTerrainMap is enabled. 

gMainChar Pointer to the main Character object, 
which is responsible for movement, 
rotation, and alignment. 

 
The basic variables that describe the 3DISO engine are 
presented in Table 1; experimentation with the various 
parameters is encouraged.  Additionally, any bitmap 

added to the “TileTextures” cast will be added to the 
world as a texture upon startup, although it won’t be used 
without referencing that texture somewhere in the map.  
The engine ships with a few textures and a default map, 
users are encouraged to make their own maps by 
modifying the text-files that are included in the download 
(author’s note: the pre-release of this document does not  
yet support dynamic map loading ).    
 The 3DISO engine is based, in part, on an earlier 
Isometric engine that was developed under Director 8.0 in 
a completely 2D environment.  The 2D engine was 
eventually abandoned with the release of Director 8.5 for 
the following reasons: (a) the Director 8.5 release allowed 
developers access to hardware accelerated graphics, 
which can provide increased performance through the use 
of the 3D cast-member, (b) the 3D engine also makes it 
significantly easier to implement lighting algorithms as it 
is able to access hardware texturing and lighting modes, 
and (c) it is now common practice in the larger gaming 
community to use full 3D environments for Isometric 
style engines for a number of reasons that will be 
discussed in this paper.  Because of this development 
path, the 2D Isometric engine is also included here, as it 
had already implemented obstacle avoidance and path-
finding algorithms, but is provided on an ‘as is’ basis, as 
refinement and further work is reserved for the successor 
version which makes use of the advanced functionality of 
8.5.  A brief glance at the Isometric engine included with 
this package is shown in figure 2. 

 
 Figure 2: Isometric scrolling engine. 

2 TILE ENGINES AND SCROLLING 
THEORY 

2.1 THE ROOTS OF SCROLLING THOERY 
Scrolling Worlds have existed as a mainstay of the 

gaming industry for a number of years, primarily due to 
their versatility and speed. Games that employ these 
theories, or ‘scrollers’ were present in some of the earliest 
manifestations of platform games, such as Atari’s 
‘Pitfall!’ and (much) later ‘Rai Den’ and ‘1954’. The 
underlying principle is incredibly simple: the engine 



should only use as many graphics as it takes to completely 
fill the users screen, or viewable area (whichever is 
smaller). Anything else is unneeded and a waste of 
processor cycles. The trick comes in trying to express the 
illusion of a ‘world’ that is much larger and more 
interesting that a single screen. The first series of games 
to accomplish this feat did so in a decidedly two-
dimensional and simplistic fashion, and yet this technique 
remains appropriate today, primarily due to its simplicity. 
This first incarnation of the scrolling world can be 
thought of as the ‘sideways scroller’ although it should be 
noted that that the technology behind the engine can just 
as easily be applied to vertically oriented games. 
 
Let us then briefly dissect a ‘sideways’ scrolling world. 
More often than not, the player will have a character, or a 
representation of the players self somewhere on the 
screen. In the earliest scrollers, the representation almost 
always did not move. Instead, the character would 
animate such that it would appear to walk or run or jump, 
but the center point of the character would remain fixed. 
The ‘movement’ would instead be applied to the 
graphic(s) that made up the background, or world 
representation (see figure 3). 
 

 
Figure 3: Sideways Scrolling Breakdown 
 

In the scheme pictured above, it is apparent that the 
image scrolls from the right of the screen to the left, 
producing the illusion that the character is running to the 
right. One way to accomplish this would be to use an 
image the width of the world, and then move the image 
across the viewable area from right to left. Unfortunately, 
this would also have the effect of destroying the ability of 
the game to work on any low-end platform, and would 
limit the size of the world significantly as the constraining 
factor is now the size of the image that the program can 
load and move in real-time. 

A more elegant solution is to use several small 
graphics, to ‘tile’ the viewable area, and to move them all 
to the left as the character moves. As a row of these tiles 
move off the screen to the left, those tiles are removed 
and more tiles are added to the right edge. Tiling a screen 

is then a kind of shell game, keeping just enough graphics 
on the screen to completely cover the area, without using 
any more than are required. In more modern solutions, the 
engine will employ the use of a clipper object (either in 
DirectX level code, or provided to the developer by the 
application as is the case in Shockwave 3D) to ensure that 
the engine does not waste any time calculating pixels 
outside the viewing area. 

There is however, another level to the complexity of 
scrolling worlds that are not randomly generated, and that 
is the concept of the map or level file. As previously 
shown in the Maze example [1], it is often useful to 
describe a large world-space in memory, without the 
burden of storing the graphical representation of the 
world. Tiling engines take this one step further, and 
define a map of tiles, each of which stores some value that 
is associated with the texture, or bitmap, associated with 
the tile [2][3], but not the bitmap itself. Modern engines 
traditionally store these maps either in simple arrays, or, 
in situations where they have to be searched at very high 
speed, it is often the case that the map will be stored in a 
data structure that provides access and search methods 
based on B, B+, and B* trees. 

Given that there is a map in memory that defines 
each tile and the graphic associated with it (but not the 
graphic itself), a separate area of the engine will draw the 
tiles to the screen, and will ‘look’ into the map to 
determine which graphics to use based on the characters 
position (see figure 4). 

Move All non-Char 
graphics this way… 

Don’t move Char this way 

 

 
 
Figure 4: Map File Lookup for Sideways Scrolling.  Figure 
based on work of C. Froman, published in [8]. 
 
Of course, this is relative in the sense that the scale is 
arbitrary. Different engines will use a different scale 
depending on the level of detail desired and world 
illusions attempted. The important thing is that as the tiles 
are shifted from the right to the left, the indices into the 
map are changed based on the current position variable 
associated with the character, even though the 
representation of the character does not move. Thus, as 
the character moves to the right, the tiles continue to fill 
the screen, but the indices into the map change, and thus 
the actual graphics drawn in each tile also change. There 



is also a very easy and important optimization that can 
occur: any areas that can be represented with the same 
graphic without destroying the illusion of a seamless 
world, should be. This is due to the fact that while the 
graphic may be referenced in the map more than once, 
and possibly drawn to the screen more than once, it will 
only need to be stored once in memory [4]. This 
methodology of graphical reuse can have a drastic effect 
on the overall memory space needed to represent a world, 
as the example below illustrates rather dramatically  (see 
figure 5). Many graphics tools make it easy to create 
small graphics that fit together to form a seamless pattern 
by using cut, paste, and mirror operations (see figure 6). 
Thus by using a relatively small bitmap, a large area can 
be textured effectively, and if multiple areas of the world 
use the same elements, this can be further capitalized on 
by referencing a map, which in turn references the same 
graphic element. 

There is a distinction that should be made here 
between ‘scrolling engines’ and ‘smooth scrolling 
engines’. The original scrolling engines operated by 
moving the tiles the exact number of pixels equal to the 
width of a tile. This then locked the size of the tiles to the 
speed of the scroll, and was thus not an optimal solution. 
More recent engines, however, use a double tracking 
system to monitor character movement. The first system 
monitors the characters position in pixels, and a character 
will move forward in some measurement that is in a unit 
of pixels. When the number of pixels moved exceeds the 
size of a tile, then the characters position on the global 
scale changes, and the map indices shift.  

In the engines presented here, this is accomplished 
by using an x and y value within the Character structure 
to store the pixel level coordinates, and a 
Current_Position_X and Current_ Position 
_Y value to store the global, or map level, coordinates.  In 
the event that the characters local x or y falls outside the 
tile centered on the character at startup, the characters x 
and y are then set to the other side of the tile, entering, if 
you will, the same tile where they would have entered the 
next were they not ‘wrapped’.  In a simple 2D scroller this 
is relatively simple because the character moves in a 
single direction, and generic if / else logic is adequate to 
see if the characters position (the variable not the bitmap 
location) has exceeded the length of a given tile. This 
allows a character to move at the sub-tile level with 
accuracy.  

 

It is important, however, to exactly bound the tile 
such that as a character moves the wrapping occurs with 
great accuracy, as any errors will result in a jitter to the 
entire world movement. This system of allowing sub-tile 
accuracy is generally referred to as ‘smooth scrolling’, 
and is often accurate to the pixel or sub-pixel level.  Other 
names for systems such as this described here are ‘pixel-
scrollers’ [3] or ‘ pixel-accurate scrollers’. 

 
Figure 5: Size reduction by use of tiling graphics.  Note both the 
variability of the referencing of a tile, and the banding that can 
occur in poorly prepared tiles (white verticals left for illustration 
purposes only).  
 

2.2 SCROLLING IN TWO DIMENSIONS 
SIMULTANEOUSLY 

Scrolling in two dimensions can, in some sense, be 
thought of as an extension of single direction character 
movement, with a mathematical structure of a slightly 
more rigorous base. Simultaneous scrolling technology 
has been around for a while now, with classics like 
Nintendo’s Legend of Zelda and Sega’s Phantasy Star 
Series (see figure 7) serving as an impeccable example of 
the genre. Indeed, most systems to this day operate on the 
following two principles: that the data structure that holds 
the center point stores with it information about the angle 
the character is heading, and that the engine has the 
capability to convert between the local (character) 
coordinate system and the Cartesian (screen based) 
coordinates. Such systems are consistent with the Turtle 
Graphics methodology developed at MIT under Ableson 

 
 
Figure 6: Cut, Paste, and Mirror to produce aligning Tiles 
 



[5], although they can be implemented through a variety 
of mechanisms.   

Generally speaking, it is easiest to think of the 
movement of a character in a 2D scroller by using vector-
based mathematics. Assume that a character has an angle 
(measured in either radians or degrees) and stores within 
itself an x and y value representing position on the 
horizontal and vertical axis respectively. Also assume that 
the character stores within its structure a speed, or a 
number of pixels to be moved each frame. By using 
Pythagorean math, we can assign a vector of movement to 
the character of a magnitude equal to the characters’ 
speed. By using the equation a2 + b2 = c2 the engine 
can calculate both the x and y component vectors that 
would equal such a movement. Then the engine will move 
the tile structures both -x and -y, to give the illusion that 
the character moved in a positive direction (see figure 8). 

 

 
Figure 7:  Phantasy Star I release date 1988.  Originally released 
for the Sega platform, copyright 1988-2001 Sega® Corp. 
 

 
Figure 8: Moving in 2 directions where the eventual tile 
translation is equal to  –1 * sqrt(Character X momentum (A) * 
Character X momentum + Character Y momentum (B) * 
Character Y Momentum).  Note that the perpetual use of the 
sqrt() function is classically slow. 

 
The use of the square root function is particularly 

slow, and should be avoided in production code.  Methods 
to avoid its use are plentiful in game programming 

literature, from classic line algorithms at the pixel level, 
to distance bounding based on the squared distance and 
co-ordinate conversions to single screen space through the 
use of a lookup table.  It is also possible to use the angle 
the character is facing to derive the new x and y location 
after a move, which is essentially the same idea as above 
in a slightly more compacted fashion, except that it uses 
the cos and sin function which, while still generally 
regarded as slow, may be faster than sqrt() on many 
systems, depending on the programming environment. 
Depending on the performance requirements of the game 
you are designing it may be that using sin and cos in 
your environment is not an option, just as it may also be 
the case that such a use is exceedingly trivial. The code to 
derive the delta-X and -Y in the Director environment is 
outlined in figure 9, which is based on the early work in 
character movement at the Rochester Institute of 
Technology [6], which is based again in part on Ableson 
[7] as well as others. 
 
--assume degrad = 3.1416 / 180 
on move me 
   x = x + cos(degrad * angle) * speed 
   y = y + sin(degrad * angle) * speed 
-- check for moving more than a tile width 
-- or moving more than a tile height 
-- move tiles -x, -y 
end 
 
Figure 9: Code Listing for 2D Scrolling Character Movement in 
Lingo Environment.  Originally derived by Kurtz, see [6] for 
details. 
 

Special attention must also be paid to the 
‘wrapping’ of the tile, or knowing when to shift the 
indices into the map lookup functions. The code must 
now catch the possibility that not only will the character 
move past the tile size from left to right (x axis) and top to 
bottom (y axis), but the possibility that if the character is 
moving at an angle, both of these conditions will be true. 
An un-optimized version of such a bounding mechanism 
is presented in figure 10, where rx is equal to the current 
x value of the character in screen coordinate space, ry is 
equal to the current y value of the character in screen 
coordinate space, gTileSize is the length of one edge 
of a square tile in pixels, and halfTileSize is one half 
that value. 
 
if rx > halfTileSize then 
  x = x - gTileSize 
  gCurrentPosX = gCurrentPosX + 1 
  if ry > halfTileSize then 
    y = y - gTileSize 
    gCurrentPosY = gCurrentPosY + 1 
  else if ry < -halfTileSize then 
    y = y + gTileSize 
    gCurrentPosY = gCurrentPosY - 1 
  end if 
else if rx < -halfTileSize then 
  x = x + gTileSize 
  gCurrentPosX = gCurrentPosX - 1 
  if ry > halfTileSize then 



    y = y - gTileSize 
    gCurrentPosY = gCurrentPosY + 1 
  else if ry < -halfTileSize then 
    y = y + gTileSize 
    gCurrentPosY = gCurrentPosY - 1 
  end if 
else if ry > halfTileSize then 
  y = y - gTileSize 
  gCurrentPosY = gCurrentPosY + 1 
  if rx > halfTileSize then 
    x = x - gTileSize 
    gCurrentPosX = gCurrentPosX + 1 
  else if rx < -halfTileSize then 
    x = x + gTileSize 
    gCurrentPosX = gCurrentPosX - 1 
  end if 
else if ry < -halfTileSize then 
  y = y + gTileSize 
  gCurrentPosY = gCurrentPosY - 1 
  if rx > halfTileSize then 
    x = x - gTileSize 
    gCurrentPosX = gCurrentPosX + 1 
  else if rx < -halfTileSize then 
    x = x + gTileSize 
    gCurrentPosX = gCurrentPosX - 1 
  end if 
end if 
 
Figure 10: Un-optimized bounding for square tiles in two 
Dimensions (this can be simplified to a 4 step case 
statement, and possibly further) 

2.3 PARALAX AND OTHER ENHANCEMENTS 
It should be noted that straight scrollers (and to 

some degree Isometric engines as well) will benefit from 
the inclusion of certain visual enhancements to increase 
the realism of the scrolling illusion. First and foremost 
among these ‘tricks’ is to develop a system that 
approximates parallax scrolling, meaning that objects in 
the foreground will appear to move a greater distance than 
those in the background.  This can be demonstrated by 
sitting in a car and driving along a road where you can see 
a great distance.  Focus on a near object, like the guardrail 
of a freeway, and attempt to observe how fast it is 
‘moving’.  Now focus on an object in the distance, near 
the horizon, and observe how fast it is ‘moving’.  
Obviously, neither one is moving, in fact you are, but the 
entire illusion of scrolling is based on the illusion that in 
fact you are still and everything else moves.  As such, it 
must approximate the illusion that parallax produces, 
namely objects in the foreground appear to move faster.  
This is generally accomplished by  placing the graphics 
on different surfaces or planes and moving them 
independently. 

It is also possible to simulate a number of other 
effects on the 2D plane that simulate natural phenomena, 
another commons example would be ‘camera 
perspective’.  This effect is in response to the fact that, in 
either a straight scroller or isometric projection, objects in 
the foreground do not appear any larger than objects in 
the background.  As this is one of the foremost visual 
clues that allow us to recognize depth in space, many 
other techniques are now of primary import, namely 
overlap (or z position), and shadow.  However, some 

engines attempt to bend or skew the isometric tile layout 
such that objects at the ‘bottom’ use slightly larger tiles 
than those at the top.  Usually, this involves drawing the 
standard projection to a buffer, and then using an 
algorithm to ‘space out’ the images towards the bottom 
before it is drawn to the screen.  Other engines shift the 
pixels out from the character’s position producing a ‘fish 
eye’ perspective centered on the character.  While none of 
these are mathematically correct, they can add realism 
beyond the projections implemented here, and should be 
considered depending on presentation style and 
performance capability assessment. 

3 ISOMETRIC LANDSCAPES 

3.1 DERIVATION OF THE ISOMETRIC VIEW 
As game engines have become more advanced, 

engine designers have focused on creating the illusion of 
depth, or 3D, long before it was possible in hardware. 
This lead to countless experiments to simulate depth using 
traditional sprites, one of which was games based on sys-
tems similar to the first-person maze presented by this 
author in earlier research [1]. Another such ‘perspective 
trick’ is the Isometric view, which is derived as follows 
from the earlier work in top-down scrolling tiled 
environments. Assume that there is a camera in 3D space 
staring directly ‘forward’ on a tile, producing a square 
image on the screen (this can also be thought of as staring 
‘down’ on a tile in top-down systems as shown in figure 
10). Next, raise the camera up half the distance between 
the camera and the tile. This produces a perspective 
environment where a square tile will now appear to ‘slant 
inward’ towards the top in a trapezoidal fashion. Finally, 
the camera is rotated about the world center by forty-five 
degrees such that the corner of the tile is now facing the 
viewer. These viewpoint rotations produce, in 3D space, 
the view of a tile that matches the standard isometric 
diamond, where a tile is a perfect trapezoid whose width 
is two times the height, although by raising and lowering 
the camera other ratios are possible, and have been used 
to great success. 

 
Because the tiles can present 2 sides of the same 

object, it is possible to present objects in a way that 
realistically simulates 3D, although there are a few 
limitations. First, lighting is nearly always ‘locked’ to a 
given angle, often using a number of tile layers to achieve 
the effect by layering separate maps for the shadow 
elements (see figure 11). While this can produce 
remarkably realistic results, it is important that all 
elements be pre-shaded from the exact same angle, else 
the illusion is destroyed. Because the Isometric projection 
is parallel, or more formally an orthographic projection, it 
has no vanishing point (which is why all the tiles can be 
identical). This distorts traditional depth cues such as size 
or focus, which tends to be more and more disorienting 



the larger the view. There have been a few games that 
have modified the camera projection to bend this rule and 
alleviate some of the distortion [8], however it still does 
not approach the realism of a true 3D projection.  

 

 
 
Figure 10: Derivation of the Isometric View 
 
 
 
Figure 11: Layered Iso maps for base, shadow, and object 
 

3.2 IMPLEMENTATION OF THE ISOMETRIC 
VIEW 

Given that an Isometric tile environment requires 
the entire screen space to be covered with isometric tiles, 
lining them up in a scheme designed to cover the entire 
area is critical. There are 3 major schemes for 
accomplishing this task, each with advantages and 
disadvantages. The first of these schemes involves using 
the tiles to create essentially one large tile (see figure 12), 
which has the advantage of the easiest numbering system 
with regard to the tile-space, but tends to waste a large 
number of tiles relative to the viewable area (if all are 
drawn).   This is commonly referred to as the “diamond 

map”, and is used in smaller web based sims, but can 
suffer from performance drawbacks without a well 
optimized clipper, as it clips a large number of tiles to 
produce a full-screen effect. 

The second scheme, or “column map”, involves 
fitting the tiles into standard rows and columns, with 
every other column shifted up or down to fit the outline of 
the neighboring columns (see figure 12). This uses the 
smallest number of tiles, and thus would theoretically 
operate the fastest, but the movement of the character is 
more difficult to calculate as shown in the diagram. 
Essentially a character will move 2 units on the cardinal 
directions and 1 unit on the diagonal. To further 
compound the issue, a character may not change value in 
the y direction depending on the current x position of the 
character, since the tiles are offset in their column 
position. An algorithm to accomplish such a movement 
will likely examine the current position of the character, 
determine if the character is currently on an odd or an 
even row, and then adjust the CurrentPosX and 
CurrentPosY variables accordingly. 

The final “slide map” solution is possibly the easiest 
to navigate and render, but is of limited utility due 
primarily in the difficulty in creating meaningful level 
creation tools.  In a slide map, X increases to the east, and 
Y to the southeast, so programmers generally regard the 
movement algorithms as cumbersome the first time 
through.  To move south, for example, involves a tile plot 
one tile west and 2 tiles south-east.  Implementing 
collision detection and path plotting on top of a system 
like this is cumbersome, and so slide maps are generally 
reserved for quick scrolling action games that choose 
speed over accuracy (as opposed to, say, strategy sims).s 

Objects 

Shadows 

Base 

Final 

 

 
Figure 12: Tiling schemes for Isometric engines 
 

3.3 BOUNDING OF ISOMETRIC TILES AND 
MOVEMENT DIFFICULTIES 

 
The real trick in Isometric tile engines comes in 

bounding them effectively. Such engines are almost trivial 
if implemented in a non-’smooth scrolling’ fashion, 
because shifting the tiles to meet a new character position 
is simplistic if the character can never move from the 
center of tiles (all that is necessary is the shift in map 
lookup for tile-texture swap). Again, this generally results 
in the use of very small tiles, since it is unlikely that the 
speed of the character will be more than 5-20 pixels. 



Creating a smooth-scrolling tile engine is more difficult. 
First, it should be noted that it is generally regarded as 
good practice to overlap the tiles by a pixel on the edges 
to avoid tearing when they are moved across the screen. It 
is possible, and often likely, to continue to use our 
movement system from the standard 2D scroller, but the 
angle of the character is almost always locked to 8 
possible directions (an example of direction locking is 
presented by Morrison [9], but is not limited to the 
discussion of Isometric environments).  This set of legal 
directions includes the 4 cardinal points and the 4 
diagonals (which are not 45 degrees, due to the skew of 
the perspective view). If a character can be known to 
move in units of a full tile (like a simple scroller), it is 
possible for the engine to simply iterate from start to 
finish position at the pixel level, again using Pythagorean 
math on the diagonals. This approach has the advantage 
of offering the appearance of smooth-scrolling, but still 
locks the movement of a character to the center of the 
tiles. It can, however facilitate the use of much larger tiles 
than a the first approach described earlier 

A more complex solution will allow the character to 
move at angles that are not the standard eight, however 
this greatly increases the complexity of the engine. The 
first step is to correctly bound the tile in such a fashion 
that it is known when a characters movement would cause 
a ‘wrap’ or a shift in the global position of the character 
relative to the map. There are 3 major schemes to doing 
so, one of which is array based, and two of which are 
mathematical. 

 

 
 

Figure 14: Array based division of a tile 
 
The second mechanism to effectively bound an isometric tile 
when the angle of character movement is unknown is to use the 
standard x and y coordinates of the character to determine if the 
character is still within the tile.  This can be accomplished by 
manipulating the standard equation for a line (y = mx + b) into 
an algebraic inequality that is true while the character is inside 
the tile, and false otherwise (which signals the need to wrap the 
character to a new x/y and modify the indices for map lookup).  
This inequality can be defined as |y| <= m*|x| + b, where x 
and y are the characters coordinates on the 2D screen 
plane, m is equal to the slope of the tile edge in quadrant 

I, and b is equal to the y value at which the top of the tile 
strikes the y Axis.  For the standard Isometric projection 
in which width = 2*height, m = -0.5 and b = tile_width / 4 
(see figure 15 for details). 
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Figure 15: Mathematical bounding of an Isometric Tile using the 
inequality |y| <= m*|x| + b. 
 

Such an approach is at once easier and more 
difficult than the more standard array lookup.  The array 
lookup benefits from the fact that even though the 
movement of the character can occur at any angle, such a 
movement can fall in one and only one pixel, which 
instantaneously arrives at a new X,Y location once it is 
known which tile the character has moved to.  The 
mathematical solution, while infinitely precise, suffers 
from the idea that it is not always clear which tile a 
character should wrap onto, as the angle of the character 
is a determining factor (see figure 16). 
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Figure 16: Areas of uncertainty when mathematically bounding 
Isometric tiles.  
 
Because of this uncertainty, and the inability of the 
equation to account for specifically which quadrant the 
character is moving from (since the inequality uses the 
absolute value of the current location), the eventual 
wrapping algorithm is much more complex than that of a 
simple square tile (see figure 17). 
 
on move me 
  set x = float(x + (cos(degrad * angle) * 
speed)) 



  set y = float(y + (sin(degrad * angle) * 
speed)) 
  b = tile_size / 4 
  if abs(y) <= -0.5 * abs(x) + b then 
    --still inside tile 
  else 
    sway = not sway 
    intersect_y = -0.5 * x + b 
    y = (-intersect_y - (y - intersect_y) \ 
      + ((sin(angle * degrad)) * speed)) 
    intersect_x = (y - b) * -2 
    x = (-intersect_x - (x - intersect_x) + \ 
      ((cos(angle * degrad)) * speed)) 
    if (abs(y) < speed) then 
      if (abs(sin(angle*degrad))>=0.4636 ) then 
        tx = x 
        if tx < 0 then 
          if (sin(angle*degrad)<=0.4636) then 
            y = - x / 2 
            x = 0 
            if current_pos_x mod 2 <> 0 then 
              current_pos_y=current_pos_y-1 
            end if 
            current_pos_x=current_pos_x-1 
          else 
            y = x / 2 
            x = 0 
            if current_pos_x mod 2 = 0 then 
              current_pos_y=current_pos_y+1 
            end if 
            current_pos_x=current_pos_x-1         
          end if           
        else 
          if (sin(angle * degrad)<=0.4636) then 
            y = x / 2 
            x = 0  
            if current_pos_x mod 2<>0 then 
              current_pos_y=current_pos_y-1 
            end if 
            current_pos_x=current_pos_x+1 
          else 
            y = - x / 2 
            x = 0  
            if current_pos_x mod 2=0 then 
              current_pos_y=current_pos_y+1 
            end if 
            current_pos_x=current_pos_x+1 
          end if 
        end if 
      else 
        if x > 0 then 
          current_pos_x=current_pos_x+2 
          sway = not sway 
        else 
          current_pos_x=current_pos_x-2 
          sway = not sway 
        end if 
      end if 
    else if (abs(x) < speed) then 
      if (abs(cos(angle * degrad))>=0.4636) then 
        ty = y 
        if ty < 0 then 
          if (cos(angle * degrad)<=0.4636) then 
            x = - y * 2 
            y = 0 
            if current_pos_x mod 2 = 0 then 
              current_pos_y=current_pos_y+1   
            end if 
            current_pos_x=current_pos_x+1 
          else 
            x = y * 2 
            y = 0 
            if current_pos_x mod 2=0 then 
              current_pos_y=current_pos_y+1   
            end if 
            current_pos_x=current_pos_x-1 
          end if 
        else 
          if (cos(angle * degrad)<=0.4636) then 
            x = y * 2 
            y = 0 
            if current_pos_x mod 2 <> 0 then 
              current_pos_y = current_pos_y - 1   

            end if 
            current_pos_x = current_pos_x + 1 
          else 
            x = - y * 2 
            y = 0 
            if current_pos_x mod 2 <> 0 then 
              current_pos_y = current_pos_y - 1   
            end if 
            current_pos_x = current_pos_x - 1 
          end if 
        end if 
      else 
        if y > 0 then 
          current_pos_y=current_pos_y-1 
          sway = not sway 
        else 
          current_pos_y=current_pos_y+1 
          sway = not sway 
        end if 
      end if 
    else if (x > 0 and y > 0 ) then --quadrant 1 
      tx = x 
      ty = y 
      x = float(2 * ty) 
      y = float(tx / 2) 
      if (current_pos_x mod 2 <> 0 ) then 
        current_pos_y = current_pos_y - 1 
      end if 
      current_pos_x = current_pos_x + 1 
    else if (x < 0 and y > 0 ) then --quadrant 2 
      tx = x 
      ty = y 
      x = float(-2 * ty) 
      y = float(-tx / 2) 
      if (current_pos_x mod 2 <> 0 ) then 
        current_pos_y = current_pos_y - 1 
      end if 
      current_pos_x = current_pos_x - 1 
    else if (x < 0 and y < 0 ) then --quadrant 3 
      tx = x 
      ty = y 
      x = float(2 * ty) 
      y = float(tx / 2) 
      if (current_pos_x mod 2 = 0 ) then 
        current_pos_y = current_pos_y + 1 
      end if 
      current_pos_x = current_pos_x - 1 
    else if (y < 0 and x > 0 ) then --quadrant 4 
      tx = x 
      ty = y 
      x = float(-2 * ty) 
      y = float(-tx / 2) 
      if (current_pos_x mod 2 = 0 ) then 
        current_pos_y = current_pos_y + 1 
      end if 
      current_pos_x = current_pos_x + 1 
    end if 
  end if 
  end if 
end calc_move 
 
Figure 17: Complete Bounding Algorithm for Isometric Tile 
Engine with unlocked character rotation and movement. 
 

As shown, the eventual bounding for an unlimited 
range of motion relative to an isometric grid is relatively 
complex, particularly if this is required to execute every 
frame to produce movement.  A third solution is also 
possible if we are using a ‘point and click’ navigation 
style, rather than a keyboard driven ‘self steering’ 
mechanism, because it is the engine that calculates the 
path rather than the player.  If this style of interaction is 
chosen, then it is generally efficient that since the engine 
has a start location (current character position) and an end 
location (point clicked converted to map coordinates), the 
engine can calculate a path from one to the other as a 



series of intermediate points, and move the tiles to each 
point in the path in sequence producing the desired 
illusion of movement.  Many games operate on this 
optimization, with the possibility that the engine can, if 
required, cycle between the path points using the 
Pythagorean approach described earlier in this section.  
More advanced solutions will use Bezier or spline curves 
in their pathing calculations to avoid the angularity that is 
visible using straight interpolation. 

While the above algebraic inequality solution is 
adequate, and sometimes desirable for inter-tile collision 
detection (not used in any demo here), it is cumbersome 
to say the least.  The third, and often regarded ‘best’, 
solution is to simply bound a square tile and then take 
appropriate movement as if the tile was isometric.  In 
essence, use the algorithm from the first (square) tile 
bounding discussion, but then relate that movement to the 
isometric grid.  This has the advantage of a much simpler 
algorithm for bounding, while at the same time offering 
the benefits of the isometric view.  Used with the 
differences between slide, staggered, and diamond maps 
[2] this solution can offer a wide range of scrolling 
options, suitable to 99% of the needs that game engines 
present. 

3.4 SECREEN TO MAP AND MAP TO SCREEN 
The traditional methodology of transporting screen to 
map and map to screen coordinate values are often hairy 
and somewhat annoying.  The engines presented here use 
a somewhat modified form of the traditional isometric 
methods in the first (2-D) iteration, and rely heavily on 
Lingo methods supplied in Shockwave 3D for the 3-D 
implementation, namely the modelUnderLoc and 
modelUnderRay commands, in #detailed mode.  
In most 2D isometric engines, it becomes very difficult to 
determine which tile was clicked on (and thus, which 
corresponding map value is desired).  This is solved by 
using a graphic similar to the one pictured in figure 17 as 
a lookup table on the click.   

 
Figure 18: Color tile for mouse x/y conversion(s) in a traditional 
isometric tiling engine. 

 
Essentially the screen is divided into a vertical and 

horizontal grid and it is determined which square the 
event has occurred.  Then, in order to determine the exact 
tile, the function uses the mouse x and y positions relative 
the the current square (or ‘bin’) that was clicked, and 

retrieves the color value from the graphic.  If this color 
value is white, then the tile x value will be even (mod 2 = 
0) and the tile y value equal to the number of bins ‘down’ 
the screen.  If, however the value is not equal to 
#rgb(255,255,255) then one of four possible shift 
operations to the base coordinates are performed.  If, for 
example, the color returned was red, then the x value 
would be bin x + 1, and the y value would be y or y+1 
depending on the value of x mod 2 (even or odd).  In 
short, isometric coordinates are annoyingly complicated.  
Tracing the code in the MapToScreen and ScreenToMap 
handlers (in the older 2-D engine) offers a careful study of 
these operations. 

True 3D environments, however, suffer from none 
of this complexity, as the tiles are in fact square.  
However, there is a second, more complicated issue in 
that the 3-D environment can be seen from many different 
possible projections (assuming the camera can be rotated) 
and, by introducing possible elevation into the equation,  

3.5 TRADITIONAL PATHFINDING 
The pathfinding implemented in the 2-D Isometric system 
is based entirely on the ‘classic’ A* algorithm presented 
by Stout [17] and optimized by Rabin [18].  The A* 
algorithm is essentially an ordered search pattern, with 
weights associated with each node in the tree (each node 
corresponding to a map location).  The basic pseudocode 
for the search then looks something like: 
 

Open = PriQueue of searchNodes 
Closed = PriQueue of all searched nodes 
 
AStarSearch( StartLoc, GoalLoc) { 
 clear Open and Closed 
 StartNode.loc = startloc 
 StartNode.CostFromStart = 0 
 StartNode.CostToGoal = \ 
  PathCostEstimate(StartLoc, GoalLoc) 
 StartNode.parent = null 
 push StartNode on Open 
  
 while Open != Empty 
 { 
  pop Node from Open 
  if Node.loc = GoalLoc 
    ConstructPath() 
    return success (or path) 
  else 
    for each neighbor NewNode of Node { 
     NewCost = Node.costFromStart + \ 
      TraverseCost(Node, NewNode) 
     if newNode is in Open or Closed, and 
     if newNode.CostFromStart <= NewCost { 
       not an improvement, so continue 
     } 
     else { 
       //new node is better 
       NewNode.parent = Node 
       NewNode.costFromStart = newCost 
       NewNode.costToGoal = \ 
        PathCostEstimate(NewNode.loc, GoalLoc) 
       NewNode.totalCost = NewNode.CostFromGoal  
        + NewNode.CostFromStart 
       if (NewNode is in Closed) { 



        remove NewNode from Closed 
       } 
       if (NewNode is in Open) { 
        adjust position in Open 
       } 
       else { 
        push NewNode on Open 
       } 
     } 
    push Node onto Closed  
    } 
 } 
 return failure - no path 
} 
 

Essentially the search algorithm determines the cost to 
reach the goal through Pythagorean Math (see the 
PathCostEstimate() handler in the 2-D engine).  If the 
current (start) tile is not the goal tile then a path must be 
created (otherwise just move to the tile using standard 
scrolling methods).  In constructing a path, the system 
clears priority queues Open and Closed, and adds follows 
the pseudocode above from start to finish.  It then uses the 
construct_path() handler to go backwards from the goal 
grabbing the location of each map square in the path by 
following the parent pointer in each Node.  We are left 
with a list of map locations that constitute the shortest 
path to a target. 
 Generally speaking, the paths produced are not 
aesthetically pleasing, in that they require the character to 
travel to the center of each tile on the path list. Rabin [18] 
makes some optimizations to this path, as does Kawick 
[4].  I have used a process here not unlike traditional 
raytracing, but without the rendering component.  It is 
inherently useful to use a ‘fake’ character and move from 
the first two third points, looking for crossing tiles that 
have a movement value of 0 (ie, a wall).  If we do not find 
such a wall, then the second point in the path list is 
irrelevant, as we can travel from first to third without 
obstruction.  This process is repeated cascading down the 
entire point list.  Note that if a wall is encountered, it is 
pointless to trace the rest of this ray.  It is also generally 
unnecessary to trace the ray with a great level of detail 
with regard to sampling.  While sampling every single 
sub-pixel unit would provide the greatest accuracy, it is 
desirable to sample only every few pixels to preserve real-
time performance.  At the same time, all of this occurs 
before any movement is made to the screen, so a very 
small delay is acceptable, where a glitch in animated 
frames would not be allowed.   The relevant handlers in 
the code are the constructPath and cullPath 
handlers. 

3.6 PATH CULLING AND PLOTTING 
THROUGH BEZIER CURVES 

This discussion is currently unfinished, and will be 
published in a separate paper.  This work is currently 
implemented in the original (2-D) engine, and can be 
transported to the 3-D implementation with relative ease.  
For more information on the use of splines in the 

Shockwave 3D environment, see Barry’s recent work on 
the subject [12], and use A* pathing to construct the 
control points of the curve.  The Path script implements 
a 2D solution to the problem of angular paths by using a 
spling object to compute a smoother path. 
 The idea is a simple one, which is basically to 
use the output of the A* slgorithm as a basis for a spline.  
The straight pathing algorithm will produce a set of 
points.  Once the points are fed into the path objects list of 
points, the setHandles method is called to move the 
handles attached to those points to produce the smoothest 
possible bath.  Because this sometimes then causes the 
path to ‘loop over’ areas filled by obstacles (that had been 
previously culled), the function ‘moves’ the handles 
slightly to produce more visually appealing results 
(through a very non-generic process, which should be 
modified if any of the major engine variables are 
changed). The redistribution of target points over the 
spline is based on the work of Will Turnage which was 
published at DOUG [19], and has only truly been 
modified for the reasons noted above, and to offer object 
encapsulation.  By using splines, or some other smooth 
path equation such as a NURBS curve, it is possible to 
simulate a much smoother character path, although it 
should be noted that it is still not perfectly realistic.  
Ideally, some random generator would add noise to the 
target points to produce ambiguity, as well as other 
physical simulation to further enhance this strategy. 

4 SCROLLING IN A 3D WORLD 

4.1 REPURPOSING THE 3D VIEW 
The idea of using a 3D graphics system to represent an 
Isometric world is at once both elegant and overkill.  
Overkill in the sense that the capability exists to 
significantly extend the functionality of the world beyond 
the 2D projections, and elegant in the problems that it 
solves.  The first step in transitioning from a 2D to a 3D 
system is to reform the logic of a simple 2D engine 
scroller into a 3D world.  This can be most easily seen in 
the shift from screen based x/y coordinates for character 
movement to world based x/z movement (assuming that 
the y Axis is vertically oriented as it is in most modern 3D 
systems).  Second, instead of using 2D graphics as ‘tiles’ 
the 3D engine will use geometry to represent its tiles, and 
will shift them around and move them much like 2D 
scrollers moved and shifted graphical elements.  To see 
the simplicity of a system like this, change the 
UseTerrainMap flag to ‘FALSE’ and restart the 
engine.  Use ‘q’ to switch to wire-frame, and it becomes 
apparent that the world is in essence a series of tiles 
perfectly aligned to form a seem-less surface, much like 
2D tiles over a screen. 

In the 3DISO engine, in the ‘Helper Scripts’ 
member there exist tools to create these geometric tiles, 
consisting of 4 faces based on 5 points.  It should be noted 
that this engine uses 4 faces per tile to gain more points to 



sample elevation, but if the goal of the engine is only to 
emulate 2D features it is possible to use a maximum of 2 
triangular faces to recreate a square tile.  Also of note is 
that this engine stores the points for each face 
independently of all others, which is done for simplicity at 
the expense of both speed and data normalization.  A 
more complete approach would be to store point data in a 
completely separate array of vertices, and to use the face 
order pointers present in the geometry to reference this 
array such that different faces in different objects point to 
the same vertex in the same array of vertices.   This is 
possible using VertexLists in DirectX, however the 
Shockwave 3D object constructs lock a given vertex list 
and faceList to a given model for simplicity.  In fact, even 
in the map this engine stores redundant information 
because it stores 5 height values for each element in the 
map, which correspond to the y values of the 5 vertices in 
the tile mesh when and if that map cell is referenced for a 
given tile.  It is only necessary, however, to store the 
center of each tile: the edges, because they are shared, are 
redundant for every other square.  Indeed, if optimized the 
engine would only store all 5 values in the map for every 
other square on the first row, and store the bottom 2 for 
every other square on all remaining rows, offsetting every 
other row by one column to reduce the redundancy of 
storing identical information to 0.  

In any event, the scripts MakeTileMesh(), 
MakeTileModel(), and MakeTileList() 
manipulate the standard S3D member functions to create 
a series of tiles that form a solid ‘grid’ of landscape 
extending just beyond the edge of the viewable area.  It 
should also be noted that it is very important to lock the 
maximum distance of the camera, as it would be possible 
to see the ‘edges’ of the land if the user can dolly the 
camera back far enough, and this is generally undesirable. 

The true elegance of recreating the Isometric view 
in full 3D environments is twofold: (a) it is possible to 
capitalize on 3D hardware found in modern graphics 
cards to allow for faster drawing, and (b) because the 
geometry can be viewed through a camera the engine can 
use a square tile, and bound it as a normal, square tile 
(which is simple), but manipulate the camera to view it 
from an Isometric perspective (which is how the 3DISO 
engine is initialized before user manipulation of the 
camera).  Indeed, the bounding algorithm for tiles in the 
3DISO engine has more in common with a simple 
smooth-scrolling engine as opposed to an Isometric 
projection, it is basically a re-mapping of the XY screen-
space into the XZ world-plane (see figure 19). 

 
if rx > halfTileSize then 
    x = x - gTileSize 
    gCurrentPosX = gCurrentPosX - 1 
    if rz > halfTileSize then 
      z = z - gTileSize 
      gCurrentPosY = gCurrentPosY - 1 
    else if rz < -halfTileSize then 
      z = z + gTileSize 
      gCurrentPosY = gCurrentPosY + 1 
    end if 

  else if rx < -halfTileSize then 
    x = x + gTileSize 
    gCurrentPosX = gCurrentPosX + 1 
    if rz > halfTileSize then 
      z = z - gTileSize 
      gCurrentPosY = gCurrentPosY - 1 
    else if rz < -halfTileSize then 
      z = z + gTileSize 
      gCurrentPosY = gCurrentPosY + 1 
    end if 
  else if rz > halfTileSize then 
    z = z - gTileSize 
    gCurrentPosY = gCurrentPosY - 1 
    if rx > halfTileSize then 
      x = x - gTileSize 
      gCurrentPosX = gCurrentPosX - 1 
    else if rx < -halfTileSize then 
      x = x + gTileSize 
      gCurrentPosX = gCurrentPosX + 1 
    end if 
  else if rz < -halfTileSize then 
    z = z + gTileSize 
    gCurrentPosY = gCurrentPosY + 1 
    if rx > halfTileSize then 
      x = x - gTileSize 
      gCurrentPosX = gCurrentPosX - 1 
    else if rx < -halfTileSize then 
      x = x + gTileSize 
      gCurrentPosX = gCurrentPosX + 1 
    end if 
  end if 
 
Figure 19: Complete Bounding Algorithm for Isometric Tiles in 
a full 3D environment (note that ‘Isometric’ is now arbitrary, 
and refers only to a camera position). 

4.2 SCENE OBJECTS AND OBJECT 
HEIRARCHY 

Given that the engine generates a series of models within 
the 3D cast-member, each of which uses a single and 
distinct mesh (we could reference the same mesh 
repeatedly if it is not deformed for elevation mapping, 
which would further increase performance), it is now 
inherently very useful to think of how best to store these 
objects for use.  There are 3 requirements that the 3DISO 
engine places on the geometry used: first, it must be easy 
to transform all of the tiles as a unit, because they will be 
transformed on the XZ plane with every character 
movement. Second, they must be able to be textured 
independently so that the engine can capitalize on the 
strengths of 2D engines and reuse the same bitmap 
wherever possible. And third, the objects should allow 
their vertices to be reset in real-time so that the y value 
can be manipulated from map information to produce 
terrain. 

The first two of these criteria are relatively simple.  
Any model can be textured independently by definition, 
so that is a non-issue provided that each tile is represented 
by a single model within the S3D hierarchy.    Second, in 
order to move all of the tiles cohesively as a unit there are 
many options.  The first of which is to loop; through all of 
the tiles and transform each one independently.  While 
this is possible, this is generally fairly slow, and not ideal 
at the speed with which interpreted code runs.  The 



solution used in the code base provided is to create one 
additional tile, perfectly centered under the character at 
startup known as the Bounding Tile.  All other tiles are 
the, after initialization and being moved into position in 
the grid, are set as children to this tile in the scene 
hierarchy.  After this is done, any manipulation of the 
Bounding Tile is applied not only to that tile, but to all of 
it’s children, which in this case applies the transformation 
to all the tiles in the scene.  Thus, instead of calling each 
tile upon movement, the character script can instead 
simply execute call(#translate, gBoundingTile, 
(x),0,z, #world), with the effect of moving all tile 
(x,z) on the XZ plane relative to the center of the world. 

The third requirement, however, is difficult at best.  
In order to rapidly manipulate each vertex of each mesh 
of each tile in real time, this engine does not use the 
recommended methodology of dealing with vertex level 
transformations in 3D cast members.  Specifically, this 
engine does not employ the use of a #MeshDeform 
modifier, as this was significantly slower when tested 
against the method that was employed.  Instead, this 
engine stores for each ‘tile’ an object of type ‘tileRef’ 
which holds 2 pointers, the first a pointer to the Model, 
and the second a pointer to the mesh resource.  When the 
RenderWorldFromMap handler loops through each 
tile to represent squares in the map, it sets the texture of 
the model through the model pointer, and manipulates the 
vertices of the mesh directly through the vertexList 
obtained through the mesh pointer (instead of accessing 
the vertexList created through applying a meshDeform 
modifier to the model resource).  This optimization was 
responsible for an approximate speed gain of 20%, while 
the exact reason for this increase remains unknown.  One 
can only assume this is due to the extra object structure 
that the meshDeform modifier places between the handler 
call and the eventual vertex transform, however this is 
speculation.   

A further optimization would be to remove the use 
of the two-dimensional array, and to move the texturing 
and vertex adjustment calls to a method inside the tile_ref 
object.  This would then be called by using the optimized 
#call symbol, and passing a flat array consisting of all the 
tile objects in the scene.  The speed increases between a 
flat list and a multi-dimensional array of objects is well 
documented both by this author [10] and many others 
[11].  The structures are left as is in this incarnation, but 
will likely change in future releases.  

4.3 CAMERA LOCKS AND THE CHARACTER 
CENTRIC VIEWPORT 

Once the keyboard is appropriately mapped into 
daemon-driven controls, moving the camera to change the 
view of the world becomes a relatively simple exercise, 
with one small flaw.  Because the engine does not use a 
two-dimensional system to display the isometric 
projection, it is free to change the viewpoint and 
decidedly ignore, in large part, all of the issues associated 
with classical isometric implementations.  There are no 
corresponding issues with regard to perspective correction 

and lens simulation as this is (for the most part) built into 
the Shockwave3D environment. 

 There are, however, two issues that deserve 
attention, one of which involves setting limits on the 
minimum and maximum height of the camera, and the 
slightly more complex issue of creating a rotation 
hierarchy to avoid “gimble-lock”.  The minimum and 
maximum value scenario is easily solved if one considers 
each ‘move’ of the camera on the Y (up) axis as a positive 
or negative increment to a global counter.  Setting 
minimum and maximum values on this counter then leads 
to an effective bounding mechanism that is quicker than 
actually querying the world for the location of the camera 
in world-space (although this increase is, for the most 
part, marginal unless there is continuous camera 
animation). 

The rotational problem is slightly more complex, 
and attention should be paid to the cause of this difficulty.  
If a camera can be said to ‘point at’ the origin from a 
particular point in space, that camera will be unable to 
rotate correctly around the origin if it has already been 
rotated a value around the Y (up) axis that is not a 
multiple of 90 degrees.  (Actually, this problem has 
nothing to do with the origin itself, it can be reproduced in 
any quadrant using any object that rotates around a point 
that is not its own center of reference).  This can be seen 
if a camera is, say 200 units towards the viewer along the 
Z axis, and 100 units ‘high’ on the Y axis.  This camera is 
rotated to point at the origin (0,0,0).  Such a projection 
would, in fact, produce the standard isometric viewpoint 
described earlier.  Now assume that the desired movement 
scheme is that of our world, meaning that the user is free 
to rotate around the Y-axis to ‘face’ any direction, and 
free to rotate around the world-space X-axis to ‘tilt’ into 
either a bird’s-eye view or a view in which the angle is 
very close to the ground plane.  It’s easy to tilt at first, 
because the camera is exactly on the world-Z axis, and so 
to tilt we rotate around the world-X.  If, however, the user 
has rotated the camera around the Y-axis, we now need a 
vector perpendicular to the facing direction of the camera, 
and horizontal to the ground plane.  The world-X or 
world-Z axis no longer fits this description, and rotating 
around this axis is now incorrect and produces 
undesirable results.  In fact, this exact scenario is the 
classic description of ‘gimble lock’ as originally 
discovered, which is the underlying inability of vector / 
matrix multiplication to solve this problem directly. 

There is, however, an incredibly simplistic solution 
that exists in many animation packages (Maya, Max, etc) 
and is duplicated here.  The idea is to represent a camera 
not with one object but with 2, a source and a target.  The 
camera source is the point used for vertex projections, but 
the target is used for rotations, the source receives the 
same transformations as the target, relative to the target.  
If this target is placed at the origin, and rotated about the 
Y axis the same number of degrees as the camera source, 
then when it is desirable to tilt the camera source, the  



camera source can be rotated about the X-axis of the 
camera target, not the world.  This produces the correct 
transformation on the source point, and the projection is 
correct.  In most modern systems, this is implemented by 
a 2-node hierarchy, assuming that transformations to the 
top of a hierarchy are perpetuated to the end, relative to 
the start node.  Thus, in most animation systems, it is 
possible to create a camera target and a camera, and to 
make the target the ‘parent’ of the camera.  Often, this is 
done automatically within the UI and the animator can 
simply animate them together or separately. 

This system is implemented in the ISO3D engine by 
creating a ‘Dummy Object’ (which is how animation 
systems implemented this solution before pre-built 
camera targets).  This dummy is placed at the origin and 
rotated in unison whenever the camera rotates around the 
Y axis.  Whenever the camera ‘tilts’ up or down relative 
to the ground plane, it rotates relative to the X-axis of the 
dummy, this avoiding the traditional gimble-lock issue. 
 

4.4 HEIGHTMAPPING AND TERRAIN 
GENERATION 

The engine presented here uses a simple image to insert 
into the standard map values for the heights of each point 
read.  This is accomplished by the DrawMapFrom 
Image() and GetHeightFromPixel handlers 
shown in Figure 20.  The first handler loops through all of 
the pixels in the image in such a way that the map will 
store a square for every 2 pixels in the image.  Thus a 
300x300 image produces a 150x150 tiles map.  The 
middle of this tile is computed by simply averaging the 4 
corners.  The actual height is computed based on the color 
of the pixel in an incredibly simple fashion (a more 
correct reader would convert the image to grayscale 
before computing the height from the pixel).  All the pixel 
reader does is add the red green and blue channels, take 
the average value from 0-255 and return that value over a 
predefined constant divisor.  This divisor can be thought 
of as a global scale, it has the effect of setting a maximum 
height for the land values to which all other values are 
scaled. 
 
on DrawMapFromImage whichMember 
  repeat with x = 1 to D3DISO[#gMapSizeX] 
    repeat with y = 1 to D3DISO[#gMapSizeY] 
       
      a = GetHeightFromPixel(whichMember, x,y) 
      b = GetHeightFromPixel(whichMember, x+1,y) 
      c = GetHeightFromPixel(whichMember,x+1, \  

y+1) 
      d = GetHeightFromPixel(whichMember,x,y+1) 
      e = (a + b + c + d) / 4 
      D3DISO[#gMap][x][y].tHeight = [a,b,c,d,e]  
       
    end repeat 
  end repeat 
   
end DrawMapFromImage 
 
on GetHeightFromPixel whichMember, x, y 
  daImage = member(whichMember).image 

  c = 0 
  c = daImage.getPixel(x,y) 
  if c <> 0 then 
     
    c = c.red + c.blue + c.green / 3 
  end if 
   
  return c / divisor 
end getHeightFromPixel 
 
Figure 20: Method(s) to read height from image and plot terrain 
in map structure.    

4.5 CHARACTER MOVEMENT AND SURFACE 
ALIGNMENT 

It is perhaps rather odd to have a section entitled 
‘character movement’ when the character does not 
actually ‘move’.  Nonetheless, it is the character script 
that contains the move methods and so in essence the 
character moves and then transfers its movement to the 
ground plane as per the discussion in section 2.1.  The 
movement script is fairly simplistic without aligning the 
bounding box to the underlying ground-plane, but grows 
in complexity as features are added.  The basic movement 
script involves the following steps: (1) move the 
character, (2) record the movement, (3) cancel out the 
movement applied in (1), and (4) apply the inverse of the 
movement to the bounding tile (which is the parent of all 
other tiles in the scene).  It is possible to avoid steps 1-3 
and simply apply the transform as in (4), but for the sake 
of logical completeness, the engine calculates the 
movement using the move / measure / un-move pipeline.  
This will have ramifications later in the discussion. 
 The next issue associated with movement is 
alignment.  The theory of how to do this fairly 
straightforward and involves the following steps: (1) fire a 
ray down from above the object and see what face is hit 
(which is accomplished using the #detailed flag in 
modelUnderRay), (2) Rotate the model to point towards 
the new point, and (3) elevate the model to sit squarely on 
the groundplane.  More detail about this process is 
provided in 5.3. 
 Movement then, follows the following 
pseudocode as a basis for driving the entire engine: 
move { 

    // (1)calculate new x and z based on current x, z, angle and  
    speed. 
 
    //(2) at the loc (x’ z’), fire a ray into the ground and retrieve 
    world coordinates (rx, ry) (could be different as I use a 2D  
    projection for movement) 
   //re-zero character movement 

   //(3) wrap rx and ry if necessary for tile bounding using square   
   tile algorithm. 
 
   //(4) if necessary re-reference from the map (if a ‘wrap  
   occurred above’) 
 
   //(5) apply the inverse of (x, z) from (1) to the bounding tile 



 
   //(6) use the result of the ray fired in (2) to figure out what is  
   underneath the character, namely height and normal vector 
  
 
     //(7) Set the character bounding box to the height returned in  
     (6) 
 
     //(8) Align the character bounding box to the normal of the 
     surface returned in (6) 
} 

This function then effectively drives the entire engine 
with regard to movement.  There are additional comments 
on implementation in the Character3D object script. 

5 OPTIMIZING THE ILLUSION 

5.1 LIGHTING 
The lighting that exists in the sample is relatively simple.  
Essentially there are two main lighting values, both of 
which are setup in startmovie.  The first is an ambient 
light value that provides a default level of visibility.  The 
second is a spotlight that shines down from a position 
directly atop the character’s center (direction = -y).  This 
light is the kept at a constant height throughout the 
character movement operations such that it doesn’t 
‘bounce’.   

To better frame the character, this light can either 
be rotated such that it shines on the character from the 
front, which created a heroic appearance, or so that it 
shines from the characters backside, which leaves the face 
always in shadow and can create a sense of mystery.  The 
important point it that the light is in the center of the 
world, which allows the extreme foreground to fade into 
darkness.  This aids the overall illusion of depth because 
it allows the viewer to recognize changes in terrain 
elevation with ease.  

5.2 CAMERAS, FOG AND CLIPPING PLANES 
The basics of the camera control system and the 
associated issues are described in section 4.3.  In addition 
to the issues presented there, it deserves mention that the 
entire illusion of the ‘space’ depends on some specific 
‘tricks’ or optimizations.  First, the camera should not be 
allowed to descend below the ground.  The demo engine 
presented here solves that problem in a simplistic fashion 
– it manipulates the divisor described in section 4.3 to 
make sure that the land scale can never exceed the 
minimum value for camera height. It is cheap, but 
effective. 
 The second ‘trick’ to keeping the illusion of 
infinite space alive is fog. The fog (or lighting depending) 
is integral to the illusion in that the user cannot be 
allowed to see far enough into the distance to see the 
shifting edges of the tiles (you can see why this would 
break down in wire-frame mode).  There are several ways 
to make sure that this viewpoint is maintained, but the 

standard methodology that is used in Isometric 
projections (which is to simply tile beyond the top of the 
screen) does not apply, because as the camera approaches 
the ground plane the number of tiles to fill the view-port 
grows exponentially.  Indeed in theory a camera sitting 
exactly on the ground-plane would need an infinite 
number of tiles as the representation in the view-port 
would never grow beyond a horizontal line. 
 The final ‘trick’ is not one that developers in 
S3D really have control over, but should be mentioned 
anyway for the sake of completeness.  The idea of 
clipping planes was once very important to developers of 
DirectX / OpenGL enabled applications.  Much of this has 
been hidden from the developer in more recent versions 
of the API’s (Microsoft’s DirectDraw was famous for 
clipping annoyances).  S3D seems to encapsulate the 
clipping mechanism within the S3D cast member (ie it is 
impossible to draw outside of it) although it is left 
unanswered from the documentation whether or not faces 
that are not in the view-port are still included in the 
rendering pipeline.  Certainly faces that traverse the edge 
of the window are clipped and rendered correctly, so one 
assumes that the underlying structures from the API are 
safely incorporated, and that this optimization is at work.   
 

5.3 COORDINATE SPACE CONVERSIONS AND 
OTHER DIFFICULTIES 
This engine uses world coordinates rather than 

screen coordinates for measuring character movement 
relative to the larger map coordinate space.  As such, the 
‘scale’ of the world is a factor, and it should be noted that 
changing the overall scale of the world is possible if 
bigger or smaller tiles are desired.  In using coordinate 
space, however, a number of issues arose, which are 
briefly dissected here: 

One problem that this engine illustrates is an 
underlying annoyance with the S3D implementation of 
PointAt().  This method will apparently fail when telling 
an object to point at a position along a vector that it is 
already pointing at (ie requires no change).  This was 
exceedingly frustrating in getting the character bounding 
box to align with the landscape.  The eventual solution 
was to rotate the character a bit before the pointAt method 
was used to align the box to the surface.  Even then 
inconsistencies occurred, and so eventually a slightly 
more complicated scheme was used, and is commented 
inside the Character3D object script. 

A second issue with the use of world coordinate 
space became clear when I originally set out to convert 
the mouse interaction style from the 2D to the 3D 
environment.  The ability to project the tile-space into 2D 
columns and measure against a bitmap is completely void, 
both because the angle of the camera is now variable, and 
because tiles in the distance do not project identically to 
tiles in the foreground.  To avoid this issue, the new 
mouse interaction code makes heavy use of the 



ModelUnderRay construct of the S3D environment.  
Essentially the mouse fires a ray into the scene and 
returns what is hit, and the handler parses that list until it 
finds the first tile.  There are some inconsistencies with 
this approach as users cannot click ‘behind’ objects, but 
other than that it should provide a suitable base 
implementation for basic point and click navigation. 

5.4 MOVEMENT AND DAEMONS 
Because of the high cost of calculation in engines such as 
these with regard to movement, a number of approaches 
have coalesced into a proposed ‘best practice’.  First, it is 
unlikely that the engine would perform well if each 
calculation was performed based on individual key 
events. This is due both to the fact that repeated key 
events are thrown at decidedly different rates by different 
operating systems [13], and that it is generally smoother 
and more acceptable to use a buffer to store input, and to 
check that buffer once per game cycle.  This idea of key 
buffering has become a standard practice in the gaming 
industry for precisely that reason [14], without it players 
could capitalize on a tight loop by moving very rapidly to 
slow enemy AI or other simultaneous action.   This 
engine makes use of a modified version of the 
EvilKeyDaemon code, which was made publicly 
available by Scott@Evilfish [15].   
 Alternately, if MOVEMENT_STYLE is defined as 
1, then the GameLoop will call methods of the 
Character3D script that invoke a point and click driven 
interface.  In either event, the character is allowed one 
movement cycle per ‘frame’, which in addition to 
producing animation, makes it possible to call other 
routines in sequence without the player outstripping the 
engine.  See comments in source code for more detail. 
 It should also be noted that this engine operates 
entirely through the use of Lingo timeout objects, without 
regard to more traditional frame lopping mechanisms.  
This is primarily due to the fact that prepareFrame(), 
EnterFrame(), and ExitFrame(), are involved 
directly with the sprite engine inside Director, while the 
Shockwave 3D sprite is not.  Because every effort has 
been made to continue to allow the S3D World to operate 
DirectToStage, it is pointless to call handlers that 
redraw either the sprite (which is unnecessary) or attempt 
to layer the world sprite relative to others.  The speed 
increase in using timeout objects was incredible, but it 
should be noted that this is primarily due to the fact that 
the world is drawn when needed, based on the time value 
in the timout object.  It is very likely that slower machines 
would suffer from this strategy while machines at the 
higher end will benefit dramatically [16]  

6 CONCLUSIONS 
These engines are expressions of both success and 

failure.  On the one hand, they represent the possibilities 
of what Lingo is now capable of, and should provide a 
basis for more optimized solutions and Shockwave 
Games.  On the flip side, they also speak to the level at 

which developers must understand the tool in order to 
create fully featured engines, and it is non-trivial.  It is 
unclear, as this work continues, whether or not this is a 
better approach than a more ‘low level’ language.  
Nonetheless, it is my belief, after constructing these 
samples, that S3D is capable of creating game engines 
that were previously unavailable to the shockwave crew, 
but are (most importantly) easy to deliver on-line.  
 This cannot be overstated.  As of this writing, 
most game engines are developed in C/C++ environments 
that are highly optimized for a specific environment (ie 
Win32, MacOS, etc).  Lingo and Shockwave can 
transcend all of that, developing on a base of code that is 
already available (the shockwave runtime engine) [aside: 
we can only hope that S3D will be available for Linux / 
UNIX in the near future ].  On one hand, this is offensive 
to the larger game community because it is not as highly 
optimized and less of a ‘real’ engine development 
platform.  On the flip side, this engine is a first step 
towards creating environments that can offer game play 
similar to current C/C++ games, which is my ultimate 
aim.  If a system could be developed in Lingo it would be 
highly desirable from a distribution point of view because 
of the ease with which Shockwave deploys to multi-user 
web environments – and while it is still unclear how far I 
can push it, I am optimistic after this initial test of a world 
system. 

7 FUTURE WORK 
This engine is still very much in its infancy.  The pathing 
and spline code still needs to be ported from the original 
2-D implementation.  Most notably, the character prop 
needs to be replaced with a boned model that supports key 
sframe animation similar to the ‘Terrain Demo’ created 
by Tom Higgins at Macromedia.  This should not be 
tremendously difficult, and has been tested (though not 
yet published).  The map needs to be generated from a 
proper file format instead of the simplistic array used in 
this demo, and should reduce it’s dependency on the 
string datatype (using integers to reference a cast 
sequence springs instantly to mind).  Additionally, the 
files should be capable of being dynamically loaded and 
unloaded, similar in style to the Maze demo published 
previously by this author.  Such work will go a long way 
towards extending the usefulness of this engine. 
 Beyond this, the ‘holy grail’ of this engine will 
be the inclusion of network support and multi-player 
functionality.  This module will include support for 
character creation, modification, deletion, inventory 
tracking, world modification, map-tracking, etc.  
Additionally and AI unit will be needed to generate 
appropriate NPC’s and control them as appropriate. Once 
this base is established, with appropriate database support, 
it should be possible to begin building a game, it is my 
dream to transform this work into an eventual multi-
player RPG. 
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