
Implementation Strategies for Microsoft XNA Game
Development in Academic Laboratory Environments

A Whitepaper describing the rationale, deployment, and operation of the Game
Design & Development Laboratory at the Rochester Institute of Technology

Andrew M Phelps
Founding Director & Associate Professor

 Game Design & Development
Golisano College of Computing & Information Sciences

Rochester Institute of Technology
Rochester, NY, 14623

http://games.rit.edu/ http://andysgi.rit.edu/

Gus D Weber
Academic Developer Evangelist

Microsoft
100 Corporate Woods, Suite 240

Rochester, NY 14623
http://www.microsoft.com/

 Christopher A Egert
Assistant Professor

Game Design & Development
Golisano College of Computing & Information Sciences

Rochester Institute of Technology
Rochester, NY, 14623

http://www.it.rit.edu/~cae/

Abstract
This paper describes implementing an XNA Games
Studio (GS) based laboratory at the Rochester
Institute of Technology, with specific attention paid
to administrative and installation issues as they
relate to academic environments. This is in contrast
to most of the generally available material on XNA
GS, which focuses on non-academic installations.
The experiences related in this paper should be
transferrable to other institutions, and it is our hope
that this information provides a platform of useful
material in incorporating XNA GS/XBOX 360 systems
at other academic institutions.

1. Introduction
The Game Design and Development (GD&D)
program, a new area of study within the B. Thomas
Golisano College of Computing and Information
Sciences at the Rochester Institute of Technology
(RIT), is growing at an astonishing rate since its
inception three years ago. Due to this growth in the
program, the facilities footprint associated with
student support is rapidly expanding. RIT entered
the domain of game programming in 2000 [11, 29],

with an initial course in graphics for game
development. Over the next several years, careful
planning led to the development of academic
concentrations, the Masters in Game Design and
Development, and the Bachelors in Game Design
and Development. Most recently, the program has
proposed minors for computing as well as non-
computing students throughout the institute. The
original expectation of the GD&D faculty was to
educate a handful of graduate students and a single
“cohort” of 30 undergraduates per year. However,
the current reality is that the programs have grown
to nearly 25 graduate students and an entering
undergraduate class of over a hundred students per
year. These programs are a strategic focus of the
Institute at this time, and have accrued a national
reputation of quality: faculty are regularly sought
out to speak on the topic of games education,
academic program development, and other similar
topics [8, 13-15, 25, 28, 32-36].

In seeking to provide an adequate working
environment for students studying topics in the
design and development of interactive
entertainment, a number of issues became
apparent. Fundamental areas of study include, but

are not limited to, computer science, programmatic
design, visual asset creation, software design,
testing, human-computer interaction, game design,
history of electronic entertainment, interactive
media, web design, as well as additional relevant
fields. As the needs of the programs escalate, a
number of challenges have presented themselves
relative to the creation of a suitable laboratory
space. This paper is an attempt to describe our
process in creating (and now administering) our
new flagship facility: the Game Design and
Development Laboratory at RIT.

The curriculum for our program is well
documented, both online [30, 31], and as a formal
program with the New York State Education
Department Office of College and University
Evaluation [27]. This program of study, by its very
nature, pushes the boundaries of both hardware
and software in a manner very similar to the
commercial games industry. The latest and
greatest is the “coin of the realm”, new packages
are released almost monthly, updates almost daily,
and the state-of-the-art is constantly evolving. As
part of the educational process, students actively
explore such change, embracing fundamental
concepts of analysis, adaptation, and dissemination.
They explore the changing technology landscape
noting how such differences impact the experiences
they create. This model clashes with traditional
academic computing environments, which tend to
“flow” around the academic calendar: updates
occur over the summer, installations are put off
during the semester, and upgrades occur when
grant funding or development monies are
accumulated, or when a particular facility is
updated by the central administration. Such
upgrade and administration paths do not map to
the traditional cycles of development environments
found in the production of commercial work. These
issues are compounded by the fact that many
systems administrators that work in academic
settings are likely to be unfamiliar with game
development as a practice, and may not recognize
the needs and best practices of the field at first
glance.

2. Desired Laboratory Experience,

Functionality, and Community

2.1 Laboratory Goals and Curriculum
Requirements

The major focus of our laboratory facility is to
provide a platform for game development for both
personal computers and console systems. To
accomplish this, we use both Intel [16] and AMD [4]
processors running Microsoft Windows Vista [22] as
a development platform. This same platform also

doubles as our personal computer test system. For
console development, we chose the XBOX360 [23]
due to cost as well as ease-of-use of the XNA GS
development platform [24]. In fact, XNA GS allows
us to simultaneously develop games for both
platforms, albeit with some marked differences in
approach in certain instances.

In addition, the platform selection also allows us to
support both casual and hard-core development
experiences: as students progress through their
studies they are subject to a curricular design
identified as scaffolding, meaning that the
curriculum will cycle through topics over and over
again, using concepts introduced at an earlier
stages of the learning process to motivate difficult
and deeper concepts. Scaffolding reinforces prior
learning, and when used effectively, can be
leveraged to provide more self-direction in terms of
guiding academic inquiry. To this end, the
development environment must accomodate the
following scheme: 1) beginning students explore
XNA GS at a small scale,2) intermediate students
create entire engines from scratch using DirectX
and C++, and 3) advanced students explore XBOX
360 multi-threading with XNA GS and compare it to
Windows threading in a variety of environments.

 Another important educational mission is to allow
students to experiences the differences when
developing for personal computing hardware vs.
consoles. For personal computers, we felt it was
criticalthat the hardware in the lab not be identical:
every year a different subset of the hardware is
upgraded to ensure that there is a constant mix of
processor types and speeds, various flavors of video
cards, monitors, and peripherals from multiple
vendors. This parallels the expectations of home
computer game players: games must run anywhere
on any reasonably configured system. To
accomodate this experience, RIT partnered with
Alienware [3] (a Dell subsidiary specializing in high
performance gaming equipment) to meet its
hardware needs based upon configurability,
performance, compatibility and service-level
agreements, although there is no reason that
suitable machines could not be purchased from
another vendor or built from scratch.

Another stated goal of the lab was to ensure that it
introduced students to professional development
tools. In our curriculum, we use both Autodesk
Maya [7] and Autodesk 3ds MAX [6], as well as the
Adobe Master Collection [2]. These packages have
stringent hardware requirements, which were taken
into account when selecting the laboratory
hardware. In addition, we use several of the
Microsoft development envrionments (discussed
later in Section 4), which also have stated system

requirements, but these tend to be less demanding
than the graphics packages in general.

2.2 Administrative Goals for the GD&D Lab
From an administrative point of vew, it was our goal
with the new laboratory facility to reduce the
overall cost of the lab on an ongoing basis, and to
specifically reduce the cost of deployment and staff
overhead. The GD&D Laboratory marks the second
attempt by RIT at creating a facility for game
development – our first facility, the Entertainment
Technology Laboratory, was created 3 years ago but
was quickly outgrown due to the growth of the
academic programs. However several lessons were
learned during the development and deployment of
the previous lab, which are summarized briefly
here:

1) Whenever possible, create a rotational scheme
for hardware and software upgrades to balance
costs across multiple years rather than having
“upgrade years” and “stagnant years”. This was
in contrast to some local budgeting practices
within our institution, but was considered
critical to maintaining currency, and from a
budget planning perspective. Such planning
also made it easier to provide access to a
variety of computing configurations based upon
parameters such as processor, graphics card,
specialty peripherals, and software package
choices.

2) Spend time on image deployment techniques
and test the redundancy of such a system.
Focus in this area (described later in this paper)
allowed us to reduce the overall staff-time
associated with laboratory setup, and utilize
personnel elsewhere for other projects.
Likewise, it also makes hardware rotation
easier.

3) Plan for hardware failure. This goes without

saying, but is often overlooked. In deploying a
lab of 64 workstations, each with a computer,
dual-monitors, XBOX 360, and associated
peripherals, it is a certainty that not all of the
hardware would arrive intact. Furthermore,
despite proper precautions and purchasing
decisions, game development seems to produce
greater rates of hardware failure than standard
laboratory use. Heat dissipation is always a
challenge due to long periods of workstation
use as well as high demands placed upon the
graphics processing hardware.The XBOX 360s
are also subject to hardware failure due to their
intensive use. Planning for spare machines,

service, and RMA procedures was a critical
component to keeping our lab operational.

4) Provide multiple room and workspace

configuration options. In learning from our first
laboratory design, we specifically chose open
spaces in which workstations could be
reconfigured with relative ease. It is virtually
impossible, in an academic setting, to foresee
what projects might be undertaken in just a few
years, particularly in an area where the
curriculum and faculty interest is simply
exploding. Thus, a reconfiguration capabilities
were considered paramount by our faculty and
students.

5) Provide a secure computer environment

without foregoing usability, flexibility, and
performance. Students in a development
setting require access to a number of settings
and files on a workstation that might normally
be “locked down” in a more traditional lab
environment. Likewise, simply letting students
“do everything” on a machine without any form
of security scheme was clearly both
unwarranted and a gross violation of our
institutional policies on computer use [37]. It
was a goal of the new design to create a system
that was flexible enough to meet the needs of
the curriculum as a development space, while
still providing added security given that it is
utilized by hundreds of students per year.

2.3 Providing a Secure, Yet Flexible, Computing

Environment and User Experience

As noted previously, a major goal of the new
laboratory was a more secure environment, while
at the same time providing increased functionality
from our prior working environments. Within the
department, we have historically offered two
radically different approaches to student use of
computing equipment: machines that are tightly
controlled in which students have very little
privilege, but the labs are publicly available to
networks and resources, and machines that offer
students full administrative rights, but are
segmented away from the network and periodically
wiped. For the purposes of providing a game
development lab, we chose to “split the difference”
between the two extremes, providing some login
and monitoring capability, as well as some
privileged access such that users could customize
their working environment and software settings.
Because of this mixed approach to account
privilege, we enacted a much more rigorous
security scheme than we might normally implement
in a segmented laboratory.

To accomplish this, we used a variety of
configuration and security options. User accounts
at RIT are generally generated in one of two main
campus systems: 1) the campus wide LDAP account
system, or 2) the campus wide Active Directory
system, which inherits from the LDAP
implementation. Our department, in turn, runs a
second Active Directory server, specifically for our
own student body, as our computing resources are
not available to students outside our immediate
academic programs. In theory, this is ideal for any
lab setup, as it means that Windows clients can
simply log into the domain, and students can
customize their own accounts at will. In practice, in
a laboratory setting, this has proven to be
somewhat problematic since as students customize
their settings and accounts, their profile is re-
downloaded to each machine they access at the
time of login and must be synchronized as they
finish their session. Gaming students, in particular,
utilize resources several magnitudes of order
greater than general students, especially when
considering the content accompanying their game
engines. With campus network congestion, and
improper use of a student desktop (i.e. leaving large
files in profile-based locations), significant issues
can occur. We also encountered specific issues with
Visual Studio 2005 and 2008. In particular, we had
conflicts with configuration settings, additional
libraries and headers (DirectX, physics packages,
and other libraries/APIs), profiles, and
differentiating global changes to all accounts and
personal preferences for user accounts. Problems
manifested as either settings that would not survive
imaging or as unusually long startup times in which
Visual Studio always believed it was running for the
first time. Although such issues are not
insurmountable, they are often difficult to trace and
follow by non-gaming system administrators.

Because of these issues associated with AD/Domain
accounts, we chose to implement a single shared
“base” account for all students. This account is
configured to automatically log on when the
machine boots. Students are then forced to log on
individually to the machine using MyLogon [17], a
tool that allows Windows authentication without a
joining the domain as well as scripted logon against
a shared local account. In this fashion, we ensure
that users are verified account holders to use the
laboratory, and have monitoring access for which
user is using a machine during any applicable
timestamp, but have the luxury of pre-configuring
one account for software use that can be a part of
the default image that is replicated to all laboratory
machines.

In terms of providing the best “balance” between
usability and security, we chose to give the base
shared account local user permissions at a Power
User level. We experimented significantly with
providing users with local Administrator accounts,
but have thus far found it to be unnecessary.
Power User permissions, while hidden from the
default account types in Windows Vista, still exist
and are exceedingly viable for our particular setup.
We found several packages (most notably Adobe
Director and a few elements of the Adobe CS3
Master Collection as well as some versions of
Autodesk 3D Studio MAX) that would correctly
operate at a Power User level rather than with
Administrative access. Unfortunately this
necessitated the deactivation of User Account
Control within the Windows Vista security
environment. These packages, with UAC active,
would trigger a prompt requiring a login with
administrative rights, but would operate correctly
with UAC disabled. We assume that this is an
incompatibility with the UAC software hook rather
than a true request for administrative rights, as the
packages operate as expected when run from
accounts with reduced access.

This scheme of quasi-administrative rights is
balanced by the use of Microsoft Windows
SteadyState [21] technology on each of the
workstations. SteadyState is a package that, once
installed on a workstation, allows no further
modification of a given partition, keeping a
‘shadow’ of any changes that are made to the drive
and then ‘snapping back’ to the default image upon
reboot. By incorporating SteadyState, changes
made by students to the lab machines are simply
wiped away at reboot – and the machines are once
again pristine for the next user. Thus, the use of the
globally shared base account is, for all intents and
purposes, locked to a completely static
environment.

In order to allow customization and user-created
file access, the machines are configured to provide
two additional partitions in addition to the system
partition that is locked with SteadyState. The first is
a small (40GB-50GB) working partition that is on the
local drive of the machine, mounted as P:\ for
public use. This partition is wiped upon user
request at boot up, and is intended as the default
local working area (the shared user account
redirects all references to P:\ such as pictures,
music, software default save locations, etc.). The
other partition provided to students upon login is
the H:\ drive, their home partition, which is
mounted at logon as a Samba share on the
departmental storage area network.

2.4 The Necessity of Multiple Hardware Sets

Another major goal of the lab, which was alluded to
previously, was the support of multiple hardware
sets. In terms of our curriculum, this is of
paramount importance, as it provides students the
necessary environment to explore the differences
between vendor implementations and approaches.
It is also critical from the viewpoint of creating a
portfolio of work, as it allows students to properly
test their work against a wide range of hardware –
since they never know precisely what a prospective
employer might have, or what the presentation
environment will be at conferences and trade-
shows.

The hardware in the lab was specifically chosen
such that it incorporated both Intel [16] and AMD
[4] processors at various speeds, and with differing
architectures. Likewise, both nVidia [26] and ATI [5]
graphics cards were used, with a variety of different
models, some in SLI and CrossFire configurations,
and some left as dual-card configurations. Each
station also consisted of an XBOX360 for console
development, and dual monitors for increased
screen real-estate (the second monitor uses
switchable input to provide a view of both the
extended Windows desktop as well as the 360).
The individual layout for a single laboratory
workstation is shown in Figure 1:

Figure 1: A single workstation (one of 64 such stations overall) within
the Game Design & Development Laboratory. Note that each
workstation provides both desktop and console development
capability, as well as extra power and data jacks for expansion.

Given this mixed hardware environment, it was a
goal of the systems administration group to be able
to deploy a single image to the entire lab, despite
the various differing system components. We were
able to achieve this using a combination of pre-
deployment setup work, and a series of post-image-
deployment scripts. This is described in greater
detail in section 3.3-3.5. It was a further goal to
then be able to monitor the use of these various
hardware sets and, through analysis, construct a

detailed model of how students were using the lab
for their development and testing work.

2.5 Creating a Community of Development

The final criteria taken into consideration in the
design of the lab was the notion that the lab should
not only provide for a suitable work environment in
terms of the hardware and software involved, it
should provide a focal point for the entire
community that surrounds and is formed by our
degree programs. Planning for these “community
aspects” of the laboratory design centered around
two differing aspect: the first being the support of
group-work and student development teams, not
just individual students, and the second being the
acknowledgement and support of student life and
social norms as they relate to the laboratory
environment.

The first topic, the support of student teams, has
been a critical issue in the success of our laboratory
environments, and the design of the GD&D
Laboratory is a direct implementation of lessons
learned when we constructed our previous facility.
In several places in our curriculum, students work in
teams of anywhere from 3-7 students, and
occasionally in larger groups. Given that this most
often the size of a development team, desks and
workstations were arranged in such a way that
there were groupings of stations that supported
close collaboration by groups of this size, with
shared centralized areas and access to whiteboards,
additional table space, and even floor-space as
necessary. We also did our best to provide modular
capability to the workstations and furniture such
that they can be reconfigured with relative ease
should a particular team or project need a specific
setup.

The second form of community support – the
generalized support of the community within the
lab space – was the source of some of the less
typical elements within the lab. The two elements
found in the design of the lab that are in direct
support of this goal are the folding wall that divides
the larger working area, and the inclusion of a
student lounge that is separate, but well integrated,
to the overall space. The folding wall allowed us to
have the best of two alternative scenarios: at
certain points of the day when classes are in the lab,
we have two separate work environments, each
with a 32-seat capacity. This represents one
“section” within the program – any given course
taught in the laboratory has a maximum cap of 30
students. Being able to simultaneously have two
courses taught side-by-side was critical from a
scheduling viewpoint.

Monitor 1 Monitor 2

(switch)

Power x6 (4 used) Data x4 (2 used)

Figure 2: The layout and overall design of the Game Design &
Development Laboratory at RIT, with major areas identified by function,
and notation of specialized features.

NOTE: drawing not necessarily to scale.

Having two smaller 32-seat labs, however, was not
ideal from having a singular space which the
program could “call home”. Despite some
additional cost, it was considered paramount that
larger events could also be supported in the lab –
from collaborative courses that worked together

(i.e. a game engine development course scheduled
side-by-side with an asset creation and animation
course) to large events such as LAN parties and
other student-run enterprises. (It is both important
and not to be overlooked that these “informal” uses
of the lab tend to cement the student experience –
use of the lab by the RIT Game Developer’s Club
and the RIT Electronic Gaming Society for LAN
parties, “development days,” and general get-
togethers have had significant impact on the overall
incorporation of the lab into the student

GD&D Laboratory #1

 32-seat facility each with
dual monitor, workstation,
XBOX 360, keyboard,
mouse, and tabletop work
area. HD 1080p projection
capability is also provided.

GD&D Laboratory #2

32-seat facility each with
dual monitor, workstation,
XBOX 360, keyboard,
mouse, and tabletop work
area.

GD&D Lounge Area

Lounge area with lunch
table, couches, television,

and 4 stand-up arcade
cabinets. Refridgerator

and microwave not shown.

GD&D Equipment Cage

Lockabe storage area for
extra game consoles, spare
parts, video and audio
equipment, etc.

Folding Partition

Dividing the laboratory spaces is a
folding partition – the labs can be
used individually, or the entire
space can be combined...

GD&D Gallery Area

Entryway and
gallery area with

demo station, and
gallery artwork

from tradeshows
and alumni titles

extending into the
hallway.

experience). Thus, by incorporating a folding
partition, the main lab can operate both as two
small spaces or one larger, single environment.

The other non-traditional element found in our
laboratory is the games lounge, which forms the
core of the social identity of the space. The lounge
is a place where students can “crash” – eat lunch,
check email, play a game. But it is also a place
where student teams can dissect existing games,
discuss plans for projects away from their
workstations, and generally socialize in connection
with, but not directly within, the working
environment. The lounge is constantly utilized, and
provides a casual, irreverent atmosphere that
consistently draws students, graduate assistants,
and faculty together. There are televisions, game
consoles, couches, lunch tables, and arcade
cabinets all available for student use, and the
lounge also acts as a pass-through environment for
all of the various areas that comprise the entire
facility.

Finally, the lab also contains a “gallery” area that
displays posters and box-art of games that alumni
have worked on, as well as various posters from
events and workshops in which the Game Design &
Development program was represented (annual
artwork from the Game Developer’s Conference is
one such example). There is also a demo-box in the
entry-way to entice anyone entering the facility to
check out the latest creations that were wrought in
the lab. An overall diagram of the entire facility,
with labels describing the major areas and traffic
flow, is provided in Figure 2 on the previous page.

3 A Vista-Based Laboratory for Game
Development

The design and development of the image and
image distribution system for the Game Design &
Development laboratory form the core of the entire
technological footprint of the lab. To briefly
summarize from previous sections, our goals for the
image were:

1. To deploy the image in a completely automated

fashion from the initial “push” of the image
onto the lab hardware all the way through a
user-ready machine.

2. To develop and support the image on multiple
hardware configurations.

3. To strike a balance between security and
customizable usability: specifically to give users
“Power User” status at the local level, but to
enable drive protection and overall
management techniques to respond quickly to
security threats.

4. To automatically provide access to an additional
public partition on each local machine, and
network access to various student resources on
the departmental storage area network.

The techniques we researched and developed in
support of each goal are presented in the following
sections.

3.3 Image creation

The first major change in the formation of the lab
image was the very nature of the tools used to
create the base operating system image. In the
previous incarnations of the lab, under Windows
XP, we used a tool called Universal Imaging Utility
[9],which allowed systems administrators to add
hardware drivers to the image pre-deployment. For
our facility, this approach had numerous problems,
false starts, and failed elements, due primarily to
the newness of several hardware devices,
difficulties in detecting certain hardware devices,
and initial incompatibilities between the product
and service pack 2 for Windows XP. In addition,
since our chosen operating system for the new
laboratory was Windows Vista Ultimate, we were
not sure if the software would present additional
challenges so a new approach was both needed and
encouraged.

Vista is, in and of itself, an interesting operating
system in terms of deployment – the Vista DVD is a
live version of the operating system, complete with
a localized Hardware Abstraction Layer. The HAL,
however is an incredible tool, as any installation of
Vista, once it sees a piece of hardware, will
“remember” that piece of hardware in the driver
cache even if it is subsequently removed from the
local system. In this sense, the driver-cache is a
“sticky” environment – and this formed the core of
our new image development strategy.

Our approach was to create a “crash lab” prior to
installing the main lab, which was simply a
temporary room with one machine that
represented each configuration that would be
found in the main lab. In total, there were
approximately ten different configurations, and as
such the crash lab contained ten machines. We
then installed Windows Vista Ultimate onto the first
machine from DVD. Following this, the image from
the first machine was captured onto a USB hard
drive using the CloneZilla [10] drive cloning tool.
The image was then deployed to the second
machine, again using CloneZilla. When the second
machine boots, Vista will detect any additional
hardware present, adding the drivers to the cache.
The image is then copied and deployed to the third
machine, and so on until the image has been

GD&D Laboratory #1

 32-seat facility each with
dual monitor, workstation,
XBOX 360, keyboard,
mouse, and tabletop work
area. HD 1080p projection
capability is also provided.

GD&D Lounge Area

Lounge area with lunch
table, couches, television,

and 4 stand-up arcade
cabinets. Refridgerator

and microwave not shown.

GD&D Gallery Area

Entryway and
gallery area with

demo station, and
gallery artwork

from tradeshows
and alumni titles

extending into the
hallway.

Figure 3: An overview of the imaging creation process using Vista’s
driver caching mechanism to create a “super image” for deployment on
multiple hardware sets.

deployed to all of the machines. This resulting
“super image” was then deployed to a machine for
software installation. An overview of this process is
depicted in Figure 3.

NOTE: this process was done with a fresh copy of
Windows Vista Ultimate, and was done in a time-
scale that allowed for Vista to remain non-
activated. Had the OS been activated, it would
have had to perform authentication checking as the
hardware changes between machines were
significant. At the end of this process, and after
software installation, the image on the final
machine was patched, licensed, and copied to the
image server for distribution.

At any time, this process can be repeated by simply
deploying the image to a test machine with new
hardware, and then copying the image back to the
server. At most, it would necessitate a possible

deactivation/activation loop for the Vista license
management environment.

NOTE: Several of the license issues associated here
are due to the Vista Ultimate product SKU lacks
support for site licensing. We also tested the use of
an MSDNAA site license of Vista Business, and had
significantly fewer issues in this regard, but wanted
the richer features of the Ultimate installs.

It should come as some surprise to most systems
administrators that Vista is in fact this resilient in
terms of detecting and booting on hardware from a
base image created on a different machine. The
hardware changes were significant including
switching brands and chipsets of processor, number
of cores, amount of RAM memory, graphics card
vendor, motherboard design, etc. We were
pleasantly surprised that this was possible given the
newly designed core of Windows Vista.This
approach would not have been possible using older
versions of the operating system. Over the course
of our testing, we automated this process across
our test network to avoid carrying the USB drive
from machine to machine, but the underlying
process was the same: allow Vista to “touch” each
type of machine and pool together a “super image”
for deployment.

Following this process, we were ready to deploy the
image, and our post-deployment scripts, to each
machine in the lab. The last thing added to the
image prior to deployment are a set of scripts that
will execute on the first boot of the image, which
we placed in a folder labeled ‘deployed’ on what
would eventually be the C:\ drive of the target
machine. A detailed look at these scripts and their
function is presented in section 3.5, and the code
for the scripts themselves is presented in Appendix
B.

3.4 Image Deployment via Multicast

The next step in creating the lab was the image
deployment phase. For this stage, all hardware had
been installed in the lab and physically connected to
the network. Each machine in the laboratory was
configured to boot from LAN using the nVidia PXE
boot agent. (Similar configurations are possible
using most LAN aware boot systems in the BIOS of
the various motherboard manufacturers). First, the
image/DHCP server was rebooted into its “image
server on” state. Next, all machines in the lab were
then booted to a power-on state, and booted via
the network to a version of Linux that is shoved to
each machine via a centralized Linux server (which
in this case is our imaging server). Each machine
joins a multicast session, and the server is
configured to wait until each machine in the lab
joins the multicast group before sending any further

information beyond the files needed to boot the
machine.

Once all of the machines are in the same multicast
group, the server executes a push of the entire
image. We tested this both using uncompressed
images (in our case the final installation of the OS
and all needed software was approximately 70GB),
as well as images compressed using gzip. In terms
of overall time, this was roughly a wash – the time
reduction in sending less information was eaten up
by the time spent compressing and uncompressing
the image on either side of the network push.

NOTE: Our laboratory infrastructure was connected
via gigabit Ethernet at every stage – all client
machines had 1G interfaces, and the switch for the
lab had 1G capability for all connected ports.
Despite this, the maximum throughput for the push
topped out at about 250Mbs – due primarily to the
overhead of writing the image packets to the local
disk. Our tool of choice here was UDP Cast [38]
with ntfsclone [18], although we also tested
CloneZilla in this context as well. Although
Clonezilla provided a more user-friendly
environment, the constraints of our network
topology as well as limitations due to the institute
network infrastructure made it impossible to
correctly deploy Clonezilla without temporary loss
of network access while changing configurations.

Once the entire laboratory image is pushed, byte by
byte, to each client, the server switches into a pure
DHCP mode and does not respond to requests to
join a multicast session. The clients are delayed a
few minutes and then reboot. Since the server has
now switched modes, the boot-from-LAN option
recognizes a local device option and the machines
boot from disk, which is now a localized copy of the
deployment image. The scripts mentioned earlier
that were placed on the C:\deployed directory are
now run automatically to configure the client
machines. The source scripts for the multicast
push, server, and client configuration are all
contained in Appendix A of this paper.

3.5 Automated Image Configuration (a.k.a.

Dante Reboots His Computer Six Times)

Now that the image has been deployed, there are
six completely automated stages of configuration
that each machine completes. These are all
accomplished via script, and after the sixth and final
reboot, the script directory is placed in a finalized
state, leaving behind a workstation that is ready for
student use. The source code to each of these
scripts is presented in Appendix B.

The first of these scripts performs an important, but
simple, operation. The script is written such that

the first thing the computer does upon waking up is
to wait for the hardware detection phase to
complete: remember that while the “super image”
on the machine has seen all of the hardware, it has
only a 1-in-10 chance of being the hardware that
the image was booted on prior to deployment. In
addition, simple changes such as different USB ports
for mouse and keyboard will cause windows to
probe for new devices. Thus, it is almost always the
case that extra time here is needed. Additionally,
this script can be configured to add additional
drivers to the machines as needed. Finally, the
script uses a tool called WSNAME [39], which sets a
unique machine name based upon IP address as
well as a workgroup name. All machines have
identifiable names (in our case we used names such
as “GDD-LAB-01 through GDD-LAB-64”). The script
then reboots the machine prior to proceeding to
phase 2 in order for the hardware detection and
system name change to take effect.

Phase 2 of the scripting setup performs, again, a
simple and yet highly critical function. The purpose
of this phase is to generate a unique system
identification configuration for each workstation.
To accomplish this, we use the NewSID [20] tool,
which is available (but not officially supported) by
Microsoft. Although there is still heated debate as
to whether this tool works for Vista, we have found
that with our software set and configuration, this
tool performs flawlessly. This phase can take a
significant amount of time, upwards of 30-40
minutes per machine. Most of the time in the script
is simply delayed time waiting for NewSID
complete. Once the system has a new system
identifier, it is rebooted, again via script, and then
enters Phase 3 of the scripting installation process.

The purpose of Phase 3 is to properly license
Windows Vista for each client machine. In our
testing with Windows Business client images, this is
trivial as RIT, like most MSDNAA partners, simply
manages a site license server, and pointing any
client machine to the server resolves the issue.
Since we were using Vista Ultimate, however, things
are a bit more involved. Each version of Ultimate
has a unique product key, and these keys must be
used as an argument for the slmgr tool to
properly license and activate the operating system.
We created a manifest that identified each client in
the laboratory by fixed IP address (which are in turn
assigned by MAC address from our DHCP
configuration). We then scripted this phase to
check the manifest, retrieve the appropriate
individualized key, and then use this key to
individually authorize each license of Windows
Ultimate. Once authorized, these licenses can be
re-imaged onto the same machines without issue,
but cannot be moved to alternate hardware
without notifying Microsoft and resetting the

authorization key. Once Windows authorization
and Genuine Advantage have been enabled, the
machine is rebooted via script in order for these
changes to take effect, and the machine proceeds
to Phase 4 of the scripting setup process.

Phase 4 of the scripting process performs several
key steps, which are unrelated to one another but
are batched together for convenience. The first
task at this stage is that the script synchronizes the
machine to a Net-time server. Second, a script is
run that expands the current C:\ partition to the
size of the drive in the machine minus 40-50GB.
The script then uses the remaining 40-50GB to
create and mount a partition at P:\ labeled “Public”.
This is the public drive that was alluded to earlier in
section 2.3. Finally, the script uses a tool called
Display Changer [1] to enable both monitors
connected to the computer, as well as to ensure
that both monitors are running at the maximum
possible resolution and refresh rate. These small
“user tweaks” can seem trivial, but are part and
parcel to providing a well-used environment,
particularly since the main drive will be locked away
from customization in the next stage. Any system-
level tweak not performed here will have to be
performed by a user every time he/she logs into the
workstation. Finally after all of these tweaks and
mods are performed, the script reboots the
machine to ensure that all changes have taken
place.

Phase 5 of the scripting process makes the last two
(very important) changes to the system: first, it
installs and configures the myLogon system, which
replaces the standard Windows logon procedure as
discussed previously. The details of this are
straightforward, the only caveat being that
customizations are added such that when a user
logs on via MyLogon, a network drive is mounted as
H:\ to the departmental storage area network
account for the user that logs in. This is relatively
simple in that MyLogon is essentially an Active
Directory domain-based authentication procedure
anyway, and so using the same information to
mount a Samba share is straightforward.

The other task that is performed in Phase 5, after all
other tasks have been completed, is to enable
SteadyState drive protection. Up to and until this
time, the machine has been in a state in which the
scripts were running with administrative rights, and
the drive was modifiable. Once enabled, however,
SteadyState considers the drive to be “set” – any
further changes that occur to the C:\ partition are
seen as temporary, and the C:\ partition is reverted
to this default state upon reboot. The script
enables SteadyState protection, which requires the
final reboot of the system. The script then deletes
the contents of the C:\deployed directory prior to

SteadyState switching on when the workstation
restarts.

At this point, the machines are now ready for
student use, all of the configuration scripts have run
and all setup is complete. The machines are
licensed, and the drives are “locked”. A final tool
that was created and deployed to each workstation
was a screen-lock tool that serves the place of a
screensaver in a more traditional logon
environment. Because students are sharing a base
Windows account, locking the machine through
CRTL+ALT+DEL would lock this account, and
students do not have the logon credentials to re-
enter the workstation. Because of this pitfall,
workstation lock, logout, and user switching are
disabled through group policy settings. But we
wanted to provide a way in which students could
lock their individualized machines when they were
away from the lab for short periods, and so we
created an application to do just that. This
application uses their Active Directory account
information to authenticate the user against the
same server that the MyLogon system uses for
domain authentication, and thus users need only
their one username/password combination. The
application also silently removes the “Start Task
Manager” functionality from the Vista logon screen,
and returns this functionality when the machine is
unlocked, by toggling a key in the registry hive.
Finally, it was a goal of the lab that this application
have an appropriate level of “sparkle” since it would
be seen often, and so it was itself written in XNA
GS/C#. A screengrab of the lock application is
provided in Figure 4.

Figure 4: The C#-based screen lock application developed for the Game
Design & Development Laboratory at RIT.

4 Supporting XNA GS in the Laboratory

Environment

4.1 Multiple flavors of XNA GS

At the time of this writing, there are several existing
versions of XNA Game Studio. For a variety of

reasons, we support all releases of XNA, not just the
latest version, as follows:

First, the versions of XNA GS currently available at
this time are the original XNA Game Studio Express
1.0r (the refresh release), XNA Game Studio 2.0,
and XNA Game Studio 3.0 CTP. As each of these
versions was released, a variety of books, training
demos, web-based tutorials, and other materials
were released. Because this material is critical to
student success, and because XNA GS is used in
introductory coursework where students could not
yet reasonably be expected to port a given sample
to the latest version, the faculty felt it was in the
best interest to support all versions available.
Likewise, RIT has internally developed a number of
samples and demonstratioin programs, and does
not have the resources to keep every program at
the latest release level. As there have been fairly
significant changes during each release, both in
terms of programmatic structure as well as
hardware targets, it is simply more effective to
support all of the versions.

4.2 XNA Installation Overview

After significant testing, we have found the most
optimimum install path to be as follows:

1. Install Visual Studio 2005 C# Express.
2. Install Visual Studio 2005 Professional and

associated MSDN release.
3. Install Visual Studio 2005 SP1 from the full

downloadable .exe (i.e. NOT through Windows
Update as this can hang).
NOTE: this step must be repeated, as the first
install will target Visual Studio, and the second
install will target the express package.

4. Install XNA Game Studio Express 1.0r.
5. Install XNA Game Studio 2.0.
6. Run Windows Update and apply all patches

NOTE: this step requires several reboots. Re-
run Windows Update after each successful
completion until there are no further critical
updates.

7. Install Visual Studio 2008 Professional.
8. Install XNA Game Studio 3.0 CTP.
9. Install the DirectX SDK (latest versioin).
10. Install Visual Studio 2008 SP1 and MSDN for SP1

from the downloadable .iso images. (Installing
from the iso images took approximately 1/5th
the time of using the web-based installer in our
testing, which had no relationship to actual
network speed).

11. Run Windows Update and apply all patches
NOTE: this step requires several reboots. Re-
run Windows Update after each successful
completion until there are no further critical
updates.

4.3 XNA Installation Caveats and Workarounds

In each of the above installations, several caveats
are applicable as noted below:

1. For Visual Studio installations, we always used

a ‘full’ install – all features were installed to
disk, nothing is set to run from a networked
location or on an ‘as needed’ basis.

2. When installing MSDN (2005/2008), a full install
is used. The help system is configured to use
web-based help first, and disk-based help only if
the network is unavailable. (This is mildly ironic
since if the network is unavailable a user could
not log on to the workstation in the first place).

3. During the installations of XNA Game Studio,
the option to allow the installer to modify the
Windows Firewall was selected. HOWEVER, this
is insufficient, as noted in section 5.6.

4. Following the installation of the DirectX SDK,
Visual Studio path variables must be re-
configured to use the $DX_SDK variable rather
than the hard-coded path. For example, instead
of using “C:\Program Files\Microsoft DirectX
SDK (August 2008)\include”, the include path
within Visual Studio should ideally be
“$(DXSDK_DIR)include”. The installers set the
DXSDK_DIR environment variable, but often do
not use it when setting paths inside visual
studio.

5. The default project locations within Visual
Studio need to be changed to the appropriate
directories. For an Active Directory installation,
these should be pointed to an area within the
user account (but not within LOCAL as they are
configured by default). For our installations,
these were configured to point to the auto-
mounted P:\ drive (i.e. the [P]ublic partition).

5 Network Configuration, Security,

and Account Management

5.1 Laboratory Network Configuration
As noted previously, the overall setup for the
network configuration of the lab is both (a)
relatively simple, and (b) highly dictated by the
requirements for the multi-cast image push. The
lab is locked to a single subnet, and this subnet is
specifically NOT shared with any other environment
on campus. This allows a full broadcast of the
multi-cast image without the need for the switch to
do anything complicated with regard to segmenting
the network. (We did have need to put a blocking
call on the switch to avoid forwarding multicast
traffic to any other portion of the RIT network).

The specifics of the DHCP setup for the lab are
relatively straightforward. The switch itself is

configured to send DHCP requests to a specific port,
and our imaging/DHCP server is connected to the
switch at that location. The pool of addresses that
are valid run the entire range of the subnet: the first
64 addresses are reserved for the workstations in
the lab – 129.XX.XX.1 – 129.XX.XX.64, and are
assigned via a hardcoded table based on MAC
address. The server address is also a fixed IP, and
clients are configured to use this address at all
times. This does create a single point of failure, but
there are several techniques and possibilities to
provide failsafe measures for a single DHCP server
address, not the least of which is simply redundant
architecture server hardware. The remaining
addresses in the lab are assigned dynamically via
DHCP, and are thus highly configurable, allowing
not only the XBOX360 connections but student
laptops, lounge machines, and game consoles and
systems of several varieties.

5.2 Firewall Requirements and Configuration

for XNA GS and XBOX360 Communication

The installation of XNA Game Studio (as noted
previously) will correctly configure the local
windows firewall. This was insufficient, however,
for our prior lab, as the firewall settings were
overwritten as an inherited security policy from the
domain controller. Thus they had to be added
manually. Likewise there are secondary and tertiary
firewalls on the switching and routing equipment
that comprise our campus infrastructure – and
exceptions on these had to be registered with our
university network administrators.

Specifically, ports 80, 88, and 3074 had to be
opened, with UDP capability on 88 and 3074 in
addition to TCP traffic. Additionally, both 80 and
3074 had to be configured with “port triggering” as
well.

The other problem encountered initially in setting
all of the XBOX 360 stations on the laboratory
network was that the default security scheme for
RIT networks is that the machine is authenticated
against a list of “allowed” MAC addresses in order
to receive a valid IP (i.e. one that does not force the
user to a redirected registration page – which is not
viewable on an XBOX). This can be circumvented
with ease since the console allows the MAC address
to be specified, but this was not an ideal situation.
Eventually, after much trial and testing, we decided
to go with the scheme described in the previous
section that locked the first 64 addresses assigned
to the MAC addresses of the 64 workstations in the
lab, and allowed the other addresses in the lab to
by dynamically assigned. This means that a given
XBOX may not have the same address at all times,

but will always receive a valid address from our
DHCP server. Because we are handling DHCP locally
on our subnet, we can disable the MAC address
security check for specific ports, namely those to
which the 360s are connected.

5.3 Account Management and Network

Integration

Most of our setup and deployment issues
surrounding accounts were covered earlier, or are
direct implementations of a basic Active Directory
scheme (with the exception of linking to the AD
mounts from the SAMBA server, which is a topic
unto itself and covered online in great detail).

A final note about accounts that is worth
mentioning is the use of the Creators Club accounts
that allow students to deploy work to the XBOX360.
We were originally significantly concerned about
these accounts as they are transferrable from XBOX
to XBOX, and linked to XBOX Live Gold Accounts.
Questions abounded about “how will we keep
student A from using the account at home?” or
“Suppose student A logs in on XBOX A, and then
student B uses the same logon information for
XBOX B?” In our previous lab, we had created a
series of 25 Silver Accounts, and linked them to 25
Creators Club accounts that we were given as a part
of an award as a winner of the 2007 Microsoft XNA
Games Studio Express Innovation Award [12]. We
were concerned about how these accounts would
be able to be used in the new lab, what would
happen when they expired, etc. We tested several
alternatives about keeping accounts locked to USB
keys, having an account-use checkout system, and
other possible scenarios.

In the end, all of this questioning and testing was
for naught. Microsoft made available last year a
Creators Club account to any student at a
recognized school through the DreamSpark
program [19], and further extended these benefits
to students covered through campus wide
agreements under the Microsoft Developer’s
Network Academic Alliance (MSDNAA). Thus, any
student at RIT that wants a Creator’s Club account
can create one by ordering through our MSDNAA
portal, and so we simply require all GD&D majors to
create such an account. Any XBOX they use in the
lab can be temporarily “theirs” just by logging into
XBOX live. This has the downside in that they have
to re-connect it to the visual studio environment,
but other than this slight inconvenience, the
benefits far exceed this minor delay.

6 Conclusion & Future Work

Through a combination of tools, techniques, and
testing, we were able to achieve our primary goals
for providing a suitable workplace for our student
body. The Laboratory can be deployed (and re-
deployed) through an almost entirely unattended
process, and provides what we feel is a suitable
balance between usable computing infrastructure
and security. Most important, with all that we have
learned from this implementation, we are better
prepared to take further steps to augment the
current implementation.

Already, we are exploring ways in which to mount
not only storage as a windows share, but to provide
group-based accounts within and extended from
the AD that link to SVN repositories for shared work
and support for group projects. This in turn will
likely be linked to Visual Studio Team Foundation
Server, Sharepoint servers, and other such tools.
The steps taken in this document provide only the
basis of an automated system – much more could
be done to create truly unique and immersive
environments that best support student work in this
exciting area. The authors would greatly welcome
any discussion or further thoughts along these lines,
and can be reached using the contact information
at the start of the document. Furthermore, we wish
you well in your own endeavors supporting game
development laboratories!

References

1. 12Noon.com. Display Changer 4.0. 2008 [cited 2008

July 31]; Available from:
http://www.12noon.com/displaychanger.htm.

2. Adobe Corporation. Adobe Creative Suite 3 Master

Collection. 2008 [cited 2008 September 15];
Available from:
http://www.adobe.com/products/creativesuite/mast
ercollection/?xNav=MC.

3. Alienware Corporation. Alienware Corporation -

Custom-Built Gaming Desktops and Notebooks. 2008
[cited 2008 September 15]; Available from:
http://www.alienware.com.

4. AMD. AMD Processors - Product Information. 2008

[cited 2008 September 16]; Available from:
http://www.amd.com/us-
en/Processors/ProductInformation/0,,30_118,00.htm
l.

5. AMD. ATI Home Page. 2008 [cited 2008 September

16]; Available from: http://ati.amd.com.

6. Autodesk. Autodesk 3ds Max. 2008 [cited 2008

September 15]; Available from:

http://usa.autodesk.com/adsk/servlet/index?id=5659
302&siteID=123112.

7. Autodesk. Autodesk Maya. 2008 [cited 2008

September 15]; Available from:
http://usa.autodesk.com/adsk/servlet/index?siteID=1
23112&id=7635018.

8. Bierre, K., et al., Motivating OOP by Blowing Things

Up: An Exercise in Cooperation and Competition in an
Introductory Java Programming Course, in
Proceedings of the 37th SIGCSE Technical Symposium
on Computer Science Education. 2006, ACM Press:
Houston, TX. p. 354-358.

9. Big Bang LLC. Universal Imaging Utility. 2008 [cited

2008 September 15]; Available from:
http://www.uiu4you.com/uiu_description.html.

10. Clonezilla. Clonezilla Home Page. 2008 [cited 2008

June 1]; Available from: http://www.clonezilla.org.

11. Deutsch, C.H., TECHNOLOGY; Some Colleges Take

Games Seriously, in New York Times. April 1, 2002:
New York, NY.

12. Downs, K., RIT's Game Design and Development

Program Wins Microsoft Research Award, in
University News. 2007.

13. Egert, C., et al., Hello, M.U.P.P.E.T.S.: Using a 3D

Collaborative Virtual Environment to Motivate
Fundemental Object-Oriented Learning, in Companion
to the 21st Annual ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA). 2006, ACM Press:
Portland, OR. p. 881-886.

14. Egert, C., S. Jacobs, and A. Phelps, Bridging the Gap:

Balancing Faculty Expectations and Student Realities
in Computer Gaming Courses, in FuturePlay. 2007:
Toronto, Ontario, Canada. p. 201-204.

15. Egert, C., P. Ventura, and A. Decker, Putting the "Fun"

Back in Fundamentals: Using Games to Teach Object-
Oriented Design Early, in American Society for
Engineering Education St. Lawrence Section
Conference. 2005: Binghamton, NY.

16. Intel Corporation. Intel Processors. 2008 [cited 2008

September 16]; Available from:
http://www.intel.com/products/processor/index.htm
?iid=prod+prod_processor.

17. IWR Consultancy. MyLogon - Alternative Network-

Logon Applet for Windows. 2008 [cited 2008 June
15]; Available from:
http://iwrconsultancy.co.uk/mylogon/.

18. linux-ntfs.org. NTFS Clone. 2008 [cited 2008 August

15]; Available from: http://www.linux-
ntfs.org/doku.php?id=ntfsclone.

19. Microsoft Corporation. Microsoft Dreakspark. 2008

[cited 2008 September 15]; Available from:
https://downloads.channel8.msdn.com/.

20. Microsoft Corporation. NewSID. 2008 [cited 2008

June 1]; Available from:
http://technet.microsoft.com/en-
us/sysinternals/bb897418.aspx.

http://www.12noon.com/displaychanger.htm
http://www.adobe.com/products/creativesuite/mastercollection/?xNav=MC
http://www.adobe.com/products/creativesuite/mastercollection/?xNav=MC
http://www.alienware.com/
http://www.amd.com/us-en/Processors/ProductInformation/0,,30_118,00.html
http://www.amd.com/us-en/Processors/ProductInformation/0,,30_118,00.html
http://www.amd.com/us-en/Processors/ProductInformation/0,,30_118,00.html
http://ati.amd.com/
http://usa.autodesk.com/adsk/servlet/index?id=5659302&siteID=123112
http://usa.autodesk.com/adsk/servlet/index?id=5659302&siteID=123112
http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=7635018
http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=7635018
http://www.uiu4you.com/uiu_description.html
http://www.clonezilla.org/
http://www.intel.com/products/processor/index.htm?iid=prod+prod_processor
http://www.intel.com/products/processor/index.htm?iid=prod+prod_processor
http://iwrconsultancy.co.uk/mylogon/
http://www.linux-ntfs.org/doku.php?id=ntfsclone
http://www.linux-ntfs.org/doku.php?id=ntfsclone
https://downloads.channel8.msdn.com/
http://technet.microsoft.com/en-us/sysinternals/bb897418.aspx
http://technet.microsoft.com/en-us/sysinternals/bb897418.aspx

21. Microsoft Corporation. Windows SteadyState. 2008
[cited 2008 July 12]; Available from:
http://www.microsoft.com/windows/products/winfa
mily/sharedaccess/default.mspx.

22. Microsoft Corporation. Windows Vista Home Page.

2008 [cited 2008 September 16]; Available from:
http://www.microsoft.com/windows/windows-
vista/default.aspx.

23. Microsoft Corporation. XBox.com - XBox 360. 2008

[cited 2008 September 16]; Available from:
http://www.xbox.com/en-US/hardware/?WT.svl=nav.

24. Microsoft Corporation. XNA Development Center.

2008 [cited 2008 September 15]; Available from:
http://msdn.microsoft.com/en-us/xna/default.aspx.

25. Nordlinger, J. and A. Phelps, Gaming for Computer

Science Instruction, in Microsoft Research Faculty
Summit. 2006: Redmond, WA.

26. nVidia. nVidia Home Page. 2008 [cited 2008

September 16]; Available from:
http://www.nvidia.com/page/home.html.

27. NYS Department of Education. NYSED Office of

College and University Evaluation. 2008 [cited 2008
September 16]; Available from:
http://www.highered.nysed.gov/ocue/.

28. Phelps, A., Social Aspects of Game Related Software,

in Microsoft Research Social Software Symposium.
2006: Redmond, WA.

29. Phelps, A. AndyWorld 11.0 - Curriculum Vitae. 2008

[cited 2008 September 16]; Available from:
http://www.it.rit.edu/~amp/vitae.html.

30. Phelps, A. Degree Program: Bachelors in Game Design

and Development. 2008 [cited 2008 September 16];
Available from:
http://games.rit.edu/degree_programs/bachelors_in
_game_design_development/.

31. Phelps, A. Degree Programs: Masters in Game Design

and Development. 2008 [cited 2008 September 16];
Available from:
http://games.rit.edu/degree_programs/masters_in_g
ame_design_development/.

32. Phelps, A. and C. Egert. Director Online: A Balrog in

the Browser. 2005 [cited 2008 Spetember 16];
Available from: http://director-
online.com/buildArticle.php?id=1160.

33. Phelps, A. and C. Egert, Educational Practices for

Technology Students in Entertainment Domains, in
American Society for Engineering Education St.
Lawrence Section Conference. 2005: Binghamton, NY.

34. Phelps, A., C. Egert, and K. Bierre, MUPPETS: Multi-
User Programming Pedagogy for Enhancing
Traditional Study: An Environment for both Upper and
Lower Division Students, in Proceedings of the 35th
Annual Frontiers in Education Conference. 2005:
Indianapolis, IN. p. S2H8-S2H15.

35. Phelps, A., C. Egert, and K. Bierre, Games First

Pedagogy: Using Games and Virtual Worlds to
Enhance Programming Education. Journal of Game
Development, 2006. 1(4): p. 45-64.

36. Phelps, A., et al., An Open-Source CVE for

Programming Education: A Case Study, in Workshop
at the 32nd International Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH).
2005: Los Angeles, CA.

37. Rochester Institute of Technology. RIT Information

Security. 2008 [cited 2008 September 15]; Available
from: http://security.rit.edu.

38. UDP Cast. UDP Cast. 2008 [cited 2008 August 8];
Available from: http://udpcast.linux.lu.

39. WSName. WSName Home Page. 2008 [cited 2008

August 15]; Available from:
http://mystuff.clarke.co.nz/MyStuff/wsname.asp.

Acknowledgements
The authors would like to thank Dave Mitchell and
Chris Satchell, Microsoft XNA, Dave Luehmann,
Microsoft Games Studios, John Nordlinger,
Microsoft Research, Gary Scarbrough, Chad
Weeden, Jim Leone, and Virginia Gross-Abbey, RIT
Information Technology, Kim Shearer, RIT B.
Thomas Golisano College of Computing &
Information Sciences, Dave Thelen, Greg Gardner
and Andy Goud, RIT Information Technology
Services, and the faculty of the RIT Game Design &
Development program for their continued advice,
support, and dedication. We could not have
created this outstanding facility without you!

http://www.microsoft.com/windows/products/winfamily/sharedaccess/default.mspx
http://www.microsoft.com/windows/products/winfamily/sharedaccess/default.mspx
http://www.microsoft.com/windows/windows-vista/default.aspx
http://www.microsoft.com/windows/windows-vista/default.aspx
http://www.xbox.com/en-US/hardware/?WT.svl=nav
http://msdn.microsoft.com/en-us/xna/default.aspx
http://www.nvidia.com/page/home.html
http://www.highered.nysed.gov/ocue/
http://www.it.rit.edu/~amp/vitae.html
http://games.rit.edu/degree_programs/bachelors_in_game_design_development/
http://games.rit.edu/degree_programs/bachelors_in_game_design_development/
http://games.rit.edu/degree_programs/masters_in_game_design_development/
http://games.rit.edu/degree_programs/masters_in_game_design_development/
http://director-online.com/buildArticle.php?id=1160
http://director-online.com/buildArticle.php?id=1160
http://security.rit.edu/
http://udpcast.linux.lu/
http://mystuff.clarke.co.nz/MyStuff/wsname.asp

Appendix A: Image Server Deployment
Scripts

Sample dhcpd.conf file from the linux distribution server

option domain-name "gdd.rit.edu";
option domain-name-servers 1xx.xx.xx.xx, 1xx.xx.xx.xx;
option routers 1xx.xx.xx.xx;
option ntp-servers 1xx.xx.xx.xx;
option netbios-name-servers 1xx.xx.xx.xx;
ddns-update-style none;
default-lease-time 86400;
max-lease-time 172800;
allow booting;
allow bootp;
next-server 1xx.xx.xx.249;
filename "pxelinux.0";

subnet 1XX.XX.XX.0 netmask 255.255.255.0 {
 range dynamic-bootp 1XX.XX.XX.XX 1XX.XX.XX.XXX;

 host gdd01 {
 # green alienware, dual 8800GTX, Intel Dual-Core
 hardware ethernet 00:00:00:00:00:00;
 fixed-address 1XX.XX.XX.1;
 option host-name "gdd01";
 }
 host gdd02 {
 # short black, ATI XFire, AMD quad core
 # old etl-24 in previous lab
 hardware ethernet 00:00:00:00:00:00;
 fixed-address 1XX.XX.XX.2;
 option host-name "gdd02";
 }

 # … several hosts (3-64) not listed here for brevity…
 #an example non-workstation fixed host on the lab network
 host gddFixedAddressMachine1 {
 hardware ethernet 00:00:00:00:00:00;
 fixed-address 1XX.XX.XX.240;
 option host-name "gddFixedAddressMachine";
 }

}

Sample deployment scripts from PXE server – sample deploy all

default interactive
timeout 5
prompt 1
label capture
 kernel rescuecd
 append initrd=initram.igz dodhcp ar_source=http://1xx.xx.xx.xx9/gdd/ autoruns=1
boothttp=http://1XX.XX.XX.249/sysrcd.dat cdroot setkmap=us noapic
label deploy
 kernel rescuecd
 append initrd=initram.igz dodhcp ar_source=http://1xx.xx.xx.249/gdd/ autoruns=2
boothttp=http://1XX.XX.XX.249/sysrcd.dat cdroot setkmap=us noapic
label interactive
 kernel rescuecd
 append initrd=initram.igz dodhcp boothttp=http://1xx.xx.xx.249/sysrcd.dat cdroot
setkmap=us noapic
label bootfromdisk
 localboot 0x80

Sample deployment scripts from the PXE server (continued) – script for 81151C

default bootfromdisk
timeout 5
prompt 1
label deploy
 kernel rescuecd
 append initrd=initram.igz dodhcp ar_source=http://1xx.xx.xx.249/gdd/ autoruns=4
boothttp=http://1xx.xx.xx.249/sysrcd.dat cdroot setkmap=us noapic
label interactive
 kernel rescuecd
 append initrd=initram.igz dodhcp boothttp=http://1xx.xx.xx.249/sysrcd.dat cdroot
setkmap=us noapic
label bootfromdisk
 localboot 0x80

Sample deployment scripts from PXE server (continued) – presender.sh references 81151C above

#!/bin/sh
cp /tftpboot/pxelinux.cfg/deploy /tftpboot/pxelinux.cfg/81151C

Sample deployment scripts from PXE server (continued) – sender.sh references 81151C above

#!/bin/sh
#udp-sender -f vistaunc.img --max-bitrate 50m
udp-sender --rexmit-hello-interval 1000 --max-bitrate 300m --ttl 2 -f vistaunc.img
#udp-sender --rexmit-hello-interval 1000 --max-bitrate 300m --ttl 2 -f
vistaimage.img.gz
sleep 30
cp /tftpboot/pxelinux.cfg/bootfromdisk /tftpboot/pxelinux.cfg/81151C

Sample reciever scripts from multicast image clone – autorun0

#!/bin/bash
#mkntfs -Q /dev/sda1
#mount -t nfs cartman:/home/clone /mnt/windows
#gunzip -c /mnt/windows/2520final.img.gz | ntfsclone -r -O /dev/sda1 -

Sample reciever scripts from multicast image clone – autorun1

#!/bin/bash
mount -t nfs 1xx.xx.xx.249:/images /mnt/custom
cd /mnt/custom
dd if=/dev/sda of=mbr.img bs=512 count=1
ntfsclone -s -O vistaunc.img /dev/sda1
#ntfsclone -s -o - /dev/sda1 | gzip -c > vistaimage.img.gz
sleep 10
poweroff

Sample reciever scripts from multicast image clone – autorun2

#!/bin/bash
#(sleep and poweroff commands omitted)
mount -t nfs 1xx.xx.xx.249:/images /mnt/custom
cd /mnt/custom
udp-sender -f vistaimage.gz

Sample reciever scripts from multicast image clone – autorun3

#!/bin/bash
#(sleep and poweroff commands omitted)
mount -t nfs 1xx.xx.xx.249:/images /mnt/custom
cd /mnt/custom
dd if=mbr.img of=/dev/sda
ntfsclone -r -O /dev/sda1 vistaunc.img

Sample reciever scripts from multicast image clone – autorun4

#!/bin/bash
mount -t nfs 1xx.xx.xx.249:/images /mnt/custom
cd /mnt/custom
sleep 5
dd if=mbr.img of=/dev/sda
sleep 5
udp-receiver --ttl 2 -p "gunzip -c" | ntfsclone -r -O /dev/sda1 -
udp-receiver --ttl 2 -p "ntfsclone -r -O /dev/sda1 -"
sleep 120
reboot

Sample SAMBA configuration file for SAMBA server (accessed by clients through automounted drive H:\)

[global]
 netbios name = SERVERNAME
 workgroup = GDD
 wins support = yes
 server string = GDD Samba Server (Samba %v)
 security = user
 encrypt passwords = yes
 enable privileges = yes
 domain master = yes
 domain logons = yes
 local master = yes
 preferred master = yes
 os level = 33
 log level = 1
 max log size = 1000
 log file = /var/log/samba/log.%m
 # hosts deny = ALL
 hosts allow = 127.0.0.1 127.0.0.2 1xx.xx.xx.x 1xx.xx.xx.
 interfaces = eth0 lo
 bind interfaces only = yes
 lanman auth = no
 ntlm auth = no
 client NTLMv2 auth = yes
 client lanman auth = no
 client plaintext auth = no

 logon home = \\SERVERNAME\%U
 logon path = \\SERVERNAME\profiles\%u
 logon drive = H:
 # logon script = foobar.bat
 add machine script = /usr/sbin/useradd -c Machine -d /var/lib/nobody -s
 /bin/false %m
 printing = cups
 printcap name = cups
 printcap cache time = 750
 cups options = raw
 usershare allow guests = No

[homes]
 comment = Home Directory for %U
 # valid users = %S, %D%w%S
 valid users = %U
 browseable = No
 read only = No
 create mask = 0600
 directory mask = 0700
 inherit acls = Yes

[profiles]
 path = /srv/samba/profiles
 comment = Network Profiles Service
 valid users = %U
 read only = No
 browseable = no
 store dos attributes = Yes
 create mask = 0600
 directory mask = 0700
 profile acls = yes
 csc policy = disable

[profiles.v2]
 copy = profiles

[netlogon]
 # path = /var/lib/samba/netlogon
 path = /srv/samba/netlogon
 comment = Network Logon Service
 readonly = yes
 browseable = no
 write list = @gddadmin

[updaterdir]
 path = /srv/samba/updater
 comment = Updater Drive
 read only = yes
 valid users = %U

[printers]
 comment = All Printers
 path = /var/tmp
 printable = Yes
 create mask = 0600
 browseable = no

[print$]
 comment = /var/lib/samba/drivers
 path = /var/lib/samba/drivers
 write list = @gddadmin
 force group = gddadmin
 create mask = 0664
 directory mask = 0775

myLogon net logon script – gdd.ini

[RunBefore]

[Mappings]
; P is already mapped to PUBLIC
H: = \\1XX.XX.XX.XX\%user%

[Run]

[RunWait]

SetUser = WSCRIPT C:\DELIVERED\SINED\SETUSERNAME.VBS %user%
DelPub = WSCRIPT C:\DELIVERED\SINED\DELPUB.VBS

Sample myLogon.ini configuration file

[Global]

; User Items

Username=
LogonNetwork=GDD Workgroup
vpn=Direct Connection

; Interface Items:
ShowProgress = 1
Debug = 0
PurgeConnections = 1
ShareCleanup = 1
InterfaceStyle=FullFeatured
AutoUpdateRegistry=0
TimeSync=1

; ras/vpn:
vpnUsername=
vpnPassword=

; Shell Integration:
SecureMode =1
SelfRepair = 1

; Passwords
AcceptLastUsed = 1
AllowNullPassword = 0
StandaloneOverrides=0
Standalone = (a large unique number)
AdminOverride= (a large unique number)

; Registry Items for Shell Integration Mode

; Advised Changes
RestrictTaskMan =1
HideUserCPL =1
NoWelcomeScreen =1
AdminShareCheck =1
NoXPSharedFolders =1
WarnOfPasswordExpiry=1
PreventPasswordExpiry=1

; Optional Changes
NoScreenSaverLock =1
NoWindowsKey =1
NoCDAutoRun =1

;Kiosk Mode
kioskkey = (a large pseudo-random number)
kioskapp =notepad.exe
kioskcloseaction =Shutdown
kiosknetmode =Standalone
kioskuser =

; "" assumes username/password of "kiosk" -
; - which account should have very restricted priveleges.

; Username Syntax-Checking:
; uminspaces = 0
; umaxspaces = 99
; umindots = 0
; umaxdots = 99
; uminats = 0

Sample myLogon.ini configuration file for client workstations (continued)

; umaxats = 99
; uminunderscores =0
; umaxunderscores = 99
; uminhyphens = 0
; umaxhyphens = 99
; umincaps = 0
; umaxcaps = 99
; uminlength = 1
; umaxlength = 99

; Networks:
DefaultNetwork=
; Set this if the first is not the default network. Otherwise, first is assumed
default.

[GDD Workgroup]

NetworkComment =
LogonServer = server.domain.name
LogonShare = netlogon
LogonDomain = DOMAIN
LogonScript = gdd.ini

[SERVERNAME]

NetworkComment =
LogonServer = server.domain.name
LogonShare = netlogon
LogonDomain = GDD
LogonScript = netlogon.ini

Appendix B: Client Configuration Scripts

Client configuration batch script – dispatch.bat
(NOTE: This script relies on a fair number of other tools, some of which are custom, and many of which are a part of
the SYSINTERNALS suite from Microsoft)

@ECHO OFF

REM DISPATCH.BAT

REM ---
REM SET UP DEFAULTS
REM ---

SET MACHID=NONE
SET VISTATYPE=R
SET MACADDR=12345
SET LICKEY=-1
SET SCRNTYPE=0
SET FIRSTMAC=12345

REM ---
REM GENERATE MAC ADDRESSES FOR THE MACHINE
REM ---

GETMAC /FO CSV /NH > C:\DELIVERED\SINED\MACADDR.TXT

REM GO THROUGH THE MAC ADDRESSES AND FIND IN THE MANIFEST

IF NOT EXIST C:\DELIVERED\SINED\MANIFEST.TXT GOTO :STAGE01

FOR /F "tokens=1,2 delims=," %%i IN (C:\DELIVERED\SINED\MACADDR.TXT) DO CALL
:PROCESSMAC %%i %%j

GOTO :STAGE01

:PROCESSMAC
 IF %FIRSTMAC% == 12345 SET FIRSTMAC=%~1

 FOR /F "tokens=1,2,3,4,5 delims=," %%i IN (C:\DELIVERED\SINED\MANIFEST.TXT) DO CALL
:PROCESSMAN %~1 %%i %%j %%k %%l %%m
 GOTO :EOF

:PROCESSMAN
 IF NOT %~1 == %~4 GOTO :EOF
 SET MACHID=%~2
 SET VISTATYPE=%~3
 SET MACADDR=%~4
 SET LICKEY=%~5
 SET SCRNTYPE=%~6
 GOTO :EOF

REM ---
REM STAGE 01 - Wait for machine to normalize and then reboot
REM Also, change the name of the machine, wg, and disk label
REM ---

:STAGE01
 IF %MACHID% == NONE SET MACADDR=%FIRSTMAC%
 IF %MACHID% == NONE SET
MACHID=IT%MACADDR:~3,2%%MACADDR:~6,2%%MACADDR:~9,2%%MACADDR:~12,2%%MACADDR:~15,2%

 REM For Debugging...
 REM ECHO Machine ID : %MACHID%
 REM ECHO Vista Type : %VISTATYPE%
 REM ECHO Mac Address : %MACADDR%
 REM ECHO License Key : %LICKEY%
 REM ECHO Screen Type : %SCRNTYPE%

Client configuration batch script – dispatch.bat (continued)

IF EXIST C:\DELIVERED\SINED\STAGE01.STA GOTO :STAGE02
 CSCRIPT //NoLogo C:\DELIVERED\SINED\STAGEBG.VBS "Stage 1 - Normalizing Device
Drivers and Renaming Machine/WG/Drive ... Please Wait"

 CSCRIPT //NoLogo C:\DELIVERED\SINED\SLEEP.VBS 300

 C:\DELIVERED\SEALED\WSNAME.EXE /WG:INFOTECH /SDL
/RDF:"C:\DELIVERED\SINED\MACHMAP.TXT" /DFK:$IP

 ECHO Stage 01 > C:\DELIVERED\SINED\STAGE01.STA

 SHUTDOWN /T 20 /R /F
 ECHO Stage 01 Complete
 GOTO :EOF

REM ---
REM STAGE 02 - Handle SID Change
REM ---

:STAGE02

 IF EXIST C:\DELIVERED\SINED\STAGE02.STA GOTO :STAGE03
 ECHO Stage 02 > C:\DELIVERED\SINED\STAGE02.STA

 CSCRIPT //NoLogo C:\DELIVERED\SINED\STAGEBG.VBS "Stage 2 - Changing SID ... Please
Wait"
 REG ADD "HKCU\Software\SysInternals\NewSID" /v EulaAccepted /t REG_DWORD /d
0x00000001 /f

 C:\Delivered\Sealed\newsid.exe /a

 REM THIS SHOULD BLOCK WAITING FOR NEWSID TO COMPLETE!

 CSCRIPT //NoLogo C:\DELIVERED\SINED\SLEEP.VBS 7200

 SHUTDOWN /T 30 /R /F
 GOTO :EOF

REM ---
REM STAGE 03 - Handle Activation (KMS for Business, Manifest for Ultimate)
REM ---

:STAGE03
 IF EXIST C:\DELIVERED\SINED\STAGE03.STA GOTO :STAGE04
 ECHO Stage 03 > C:\DELIVERED\SINED\STAGE03.STA

 CSCRIPT //NoLogo C:\DELIVERED\SINED\STAGEBG.VBS "Stage 3 - Licensing Vista ...
Please Wait"

 CSCRIPT //NoLogo C:\DELIVERED\SINED\SLEEP.VBS 30
 IF %VISTATYPE% == U CSCRIPT //NoLogo C:\WINDOWS\SYSTEM32\SLMGR.VBS -ipk %LICKEY%
 IF %VISTATYPE% == R CSCRIPT //NoLogo C:\WINDOWS\SYSTEM32\SLMGR.VBS -rearm
 CSCRIPT //NoLogo C:\DELIVERED\SINED\SLEEP.VBS 120
 IF NOT %VISTATYPE% == R CSCRIPT //NoLogo C:\WINDOWS\SYSTEM32\SLMGR.VBS -ato
 SHUTDOWN /T 120 /R /F
 GOTO :EOF

REM ---
REM STAGE 04 - NET TIME to point at Porsche, Lexus, and Beetle
REM Select the proper monitor resolution
REM Expand Disk Size and create public partition
REM Change SID and Machine Name
REM ---

:STAGE04

 IF EXIST C:\DELIVERED\SINED\STAGE04.STA GOTO :STAGE05
 ECHO Stage 04 > C:\DELIVERED\SINED\STAGE04.STA
 CSCRIPT //NoLogo C:\DELIVERED\SINED\STAGEBG.VBS "Stage 4 - NETTIME, Screen Res,
Drive Expand and P: Partition ... Please Wait"

Client configuration batch script – dispatch.bat (continued)

CSCRIPT //NoLogo C:\DELIVERED\SINED\SLEEP.VBS 30

 NET TIME /SETSNTP:"server1.domain.name server2.domain.name server3.domain.name "
 IF %SCRNTYPE% == 0 GOTO :ST00
 IF %SCRNTYPE% == 1 GOTO :ST01
 IF %SCRNTYPE% == 2 GOTO :ST02
 IF %SCRNTYPE% == 3 GOTO :ST03
 IF %SCRNTYPE% == 4 GOTO :ST04
 IF %SCRNTYPE% == 5 GOTO :ST05
 IF %SCRNTYPE% == 6 GOTO :ST06
 IF %SCRNTYPE% == 7 GOTO :ST07
 IF %SCRNTYPE% == 8 GOTO :ST08
 IF %SCRNTYPE% == 9 GOTO :ST09
 IF %SCRNTYPE% == 10 GOTO :ST10
 IF %SCRNTYPE% == 11 GOTO :ST11
 IF %SCRNTYPE% == 12 GOTO :ST12
 IF %SCRNTYPE% == 13 GOTO :ST13
 IF %SCRNTYPE% == 14 GOTO :ST14
 IF %SCRNTYPE% == 15 GOTO :ST15
 IF %SCRNTYPE% == 16 GOTO :ST16

:STDONE
 CSCRIPT //NoLogo C:\DELIVERED\SINED\DSKPROBE.VBS 40 >
C:\DELIVERED\SINED\DISKPART.INP
 CSCRIPT //NoLogo C:\DELIVERED\SINED\SLEEP.VBS 10
 DISKPART /S C:\DELIVERED\SINED\DISKPART.INP
 SHUTDOWN /T 30 /R /F
 GOTO :EOF

REM ---
REM STAGE 05 - Activate MyLogon and SteadyState
REM ---

:STAGE05
 IF EXIST C:\DELIVERED\SINED\STAGE05.STA GOTO :STAGE06
 ECHO Stage 05 > C:\DELIVERED\SINED\STAGE05.STA

 CSCRIPT //NoLogo C:\DELIVERED\SINED\STAGEBG.VBS "Stage 5 - Enabling MyLogon and
SteadyState ... Please Wait"

 CSCRIPT //NoLogo C:\DELIVERED\SINED\SLEEP.VBS 30

 REM Configure Keys for MyLogon (Active)

 REG ADD "HKLM\Software\Microsoft\Windows NT\CurrentVersion\WinLogon" /v Shell /t
REG_SZ /d C:\Windows\MyLogon\Explorer.exe /f
 REG ADD "HKLM\Software\Microsoft\Windows NT\CurrentVersion\WinLogon" /v
ShutdownFlags /t REG_DWORD /d 0x00000027 /f
 REG ADD "HKCU\Software\MyLogon" /v LastUsed /t REG_SZ /d
2193161362023453472146141226086051133 /f
 REG ADD "HKCU\Software\MyLogon" /v LogonStatus /t REG_SZ /d authenticated /f
 REG ADD "HKCU\Software\MyLogon" /v securemode /t REG_SZ /d 1 /f

 REM Configure Keys if Standard Logon (Inactive)

 REM REG ADD "HKLM\Software\Microsoft\Windows NT\CurrentVersion\WinLogon" /v
AutoAdminLogon /t REG_SZ /d 0 /f
 REM REG ADD "HKLM\Software\Microsoft\Windows NT\CurrentVersion\WinLogon" /v
DefaultUserName /t REG_SZ /d "" /f
 REM REG ADD "HKLM\Software\Microsoft\Windows NT\CurrentVersion\WinLogon" /v
DefaultPassword /t REG_SZ /d "" /f
 REM REG ADD "HKLM\Software\Microsoft\Windows NT\CurrentVersion\WinLogon" /v
DefaultDomainName /t REG_SZ /d "" /f
 REM REG ADD "HKLM\Software\Microsoft\Windows NT\CurrentVersion\WinLogon" /v
ForceAutoLogon /t REG_DWORD /d 0 /f

 REM Configure Keys for SteadyState

 REM REG ADD "HKLM\Software\DIGM"
 REM REG ADD "HKLM\Software\DIGM" /v NetworkUpdaterPath /t REG_SZ /d
C:\DELIVERED\SINED\ /f

 REM Disable UAC

Client configuration batch script – dispatch.bat (continued)

REG ADD "HKLM\Software\Microsoft\Windows\CurrentVersion\Policies\System" /v EnableLUA
/t REG_DWORD /d 0 /f

 REM Remove Administrators Rights and Substitute Power Users
 NET localgroup "Power Users" %username% /ADD
 NET localgroup "Administrators" %username% /DELETE

 REM Delete all sensitive files
 DEL C:\DELIVERED\SINED\MANIFEST.TXT

 REM Activate SteadyState

:LOOPWSS
 "C:\Program Files\Windows SteadyState\SCTUI.EXE" /EnableWDPAndReboot
 CSCRIPT //NoLogo C:\DELIVERED\SINED\SLEEP.VBS 5
 GOTO :LOOPWSS

 REM Code should NEVER GET TO THE NEXT TWO LINES UNLESS STEADYSTATE FAILS!
 CSCRIPT //NoLogo C:\DELIVERED\SINED\SLEEP.VBS 60
 SHUTDOWN /T 120 /R /F

 GOTO :EOF

:STAGE06
 ECHO Stage 06 Complete
 GOTO :EOF

REM ---
REM Monitor Configurations
REM ---

:ST00
 C:\DELIVERED\SEALED\DCCMD -monitor="\\.\DISPLAY1" -width=max -height=max -depth=max
-refresh=max
 C:\DELIVERED\SEALED\DCCMD -monitor="\\.\DISPLAY2" -secondary -right -more
 C:\DELIVERED\SEALED\DCCMD -apply
 C:\DELIVERED\SEALED\DCCMD -monitor="\\.\DISPLAY2" -width=max -height=max -depth=max
-refresh=max
 GOTO :STDONE

:ST01
 C:\DELIVERED\SEALED\DCCMD -monitor="\\.\DISPLAY1" -width=max -height=max -depth=max
-refresh=max
 C:\DELIVERED\SEALED\DCCMD -monitor="\\.\DISPLAY2" -secondary -right -more
 C:\DELIVERED\SEALED\DCCMD -apply
 C:\DELIVERED\SEALED\DCCMD -monitor="\\.\DISPLAY2" -width=max -height=max -depth=max
-refresh=max
 GOTO :STDONE
REM Remaining Monitor Configuration Blocks deleted for brevity, similar to above

Client Update Script – updater.bat - checks for new script set on server

REM UPDATER.BAT

REM Attach to the network share for updates
NET USE \\(server.domain.name)\updaterdir /USER:updater

REM See if the update manifest exists
IF NOT EXIST \\(server.domain.name)\updaterdir\update.txt GOTO :EOF

REM Copy the Manifest Locally
COPY /Y \\(server.domain.name)\updaterdir\update.txt
C:\Delivered\Sined\updates\update.txt

REM Scan through the Manifest and find what needs to be updated
FOR /F "tokens=1,2,3,4 delims=," %%i IN (C:\Delivered\Sined\updates\update.txt) DO CALL
:PROCESSUPDATE %%i %%j %%k %%l

GOTO :EOF

REM --
REM Process update function
REM --

:PROCESSUPDATE
 IF EXIST "C:\Delivered\Sined\updates\manifests\%~2" GOTO :EOF

 IF NOT EXIST "\\(server.domain.name)\updaterdir\%~3" GOTO :EOF
 COPY "\\(server.domain.name)\updaterdir\%~3" "C:\Delivered\Sined\updates\temp\%~3"

 "C:\Delivered\Sined\updates\temp\%~3" %~4
 ECHO "Installed " > "C:\Delivered\Sined\updates\manifests\%~2"

 DEL /Q "C:\Delivered\Sined\updates\temp\%~3"

Custom Diskprobe Utility – diskprobe.vbs

' DSKPROBE.VBS

' Routine that checks the disk size to see how far we can extend it
' Also determines if we have enough room for a public partition

' Parameter - Target Public Drive Size in GB

Set args = WScript.Arguments
publicsizegb = args(0)

WScript.Echo("SELECT DISK 0")
WScript.Echo("SELECT PARTITION 1")

' Get Disk Information

Set objWMIService =
GetObject("winmgmts:{impersonationlevel=impersonate}!\\.\root\cimv2")
Set colDiskDrives = objWMIService.ExecQuery("SELECT * FROM Win32_DiskDrive")

For Each objDiskDrive in colDiskDrives
 if (objDiskDrive.Index = 0) then
 disksizebytes = objDiskDrive.Size
 end if
Next

' Now get Partition information

Set colDiskPartitions = objWMIService.ExecQuery("SELECT * FROM Win32_DiskPartition")

For Each objPartition in colDiskPartitions
 if ((objPartition.DiskIndex = 0) And (objPartition.Index = 0)) then
 partsizebytes = objPartition.Size
 end if
Next

' Now figure out rest

publicsizebytes = publicsizegb * 1024 * 1024 * 1024

extendsizebytes = disksizebytes - partsizebytes - publicsizebytes

if (extendsizebytes > (1 * (1024 * 1024 * 1024))) then
 WScript.Echo("EXTEND SIZE=" & ((extendsizebytes / 1024 / 1024) \ 1))
end if

WScript.Echo("CREATE PARTITION PRIMARY")
WScript.Echo("FORMAT FS=NTFS LABEL=""PUBLIC"" QUICK")
WScript.Echo("ASSIGN LETTER=P")

Appendix C: List of Installed Packages
on Rich Vista Image for GD&D Lab

Software Listing for Entire Rich Image for GD&D Laboratory Workstations 2008

McAfee Virusscan Agent
Microsoft Office 2007 Business
Microsoft Visio 2007
Microsoft Project 2007

Adobe Flash CS3
Adobe Director 11
Quicktime Pro
Real Player
Winamp
Sound Forge XP
Audacity
Nvidia SDK
Nvidia CG Toolkit
NVShaderPerf
PhotoShop DDS Plugins
Tortoise CVS
Tortoise SVN
Apache Ant
WinMerge
Wings3D
Cortona VRML
Flex Builder
XNA 2.0
XNA 3.0 CTP
Flex Builder 3
Irfanview
Adobe Flash Player
Adobe Flash Player Debugger
Adobe Air Player
Maya 2008
3DSMax 2008
Panda DirectX Exporter for 3DSMAX
Alienbrain Client

WinZip
7-Zip
WinRAR
SmartFTP
FileZilla
WinSCP
Putty
Adobe Acrobat Reader
Adobe SVG Viewer
Nero Express
WinDVD Suite
Ulead DVD Movie Factory
CygwinX
Arduino IDE
Processing
Control P5 Library for Processing
Minim Library for Processing

Condor (RIT Internal Parallel Experiment)

VMWare Workstation 6

Firefox 3
Opera
Web development extension for Firefox
Firebug Extension for Firefox
JSView Extension for Firefox
FireFTP Extension for Firefox
Yahoo Widget Engine
Copy Converter Widget for Yahoo

Visual Studio .NET 2005
Visual Studio .NET 2008
DirectX SDK
Java SDK
Java JRE
Java Documentation
Java Web Services Developer Pack (JWSDP)
BlueJ
NetBeans
Bloodshed C++
UltraEdit
Jedit
Jgrasp
Crimson Editor
BasicX
Eclipse
Eclipse SDK Packages
Eclipse PHP Plugin
Java IO Files (Serial/Parallel)
Qt

MySql
ERWin
Adam Ineractive Anatomy
Matlab
Dchip.org
R
R Bioconductor for R

Morphon XML Editor
oXygen XML Editor
Adobe Photoshop CS3
Adobe Illustrator CS3
Adobe Dreamweaver CS3
Adobe Fireworks CS3
Adobe Premiere CS3
Adobe After Effects CS3
Adobe Encore CS3
Adobe Soundbooth CS3

Appendix D: System Preparation
Checksheet for GD&D Lab Workstations
(Pre-Push Image Installation)

Sample System Preparation Guide for Pre-Image Master Workstation

1) Change ITAdmin/GDDAdmin password
2) Create WSSAdmin account
3) Give WSSAdmin Administrators group privilege
4) Install MyLogon program from WSSAdmin, Run As Administrator
5) Install SteadyState program from WSSAdmin, Run As Admnistrator
6) Install drbl-winroll program from WSSAdmin (DO NOT SET UP SID/SSH SERVER MODE!)
7) Change naming pattern for machines if necessary (IP or MAC pseudo-regex – see instructions)
8) Copy CD artwork\gdddesktop.bmp C:\Windows
9) Copy contents of CD Delivered Directory to C:\
10) Copy CD MyLogon\myLogon.ini to Directory C:\Windows\MyLogon
11) [ETLAB] Copy MyLogon\banner.gif to Directory C:\Windows\MyLogon
12) [ITLAB] Copy MyLogon\oldbanner.gif to Directory C:\Windows\MyLogon
13) Copy CD Scripts to C:\Program Files\Windows SteadyState\Scripts
14) Copy CD XML to C:\Program Files\Windows SteadyState\XML
15) Copy CD GDD_XNA_Screen_SaverObfusated\GDD_XNA_Screen_Saver\

GDD_XNA_Screen_Saver\bin\x86\Release\GDD_XNA_Screen_Saver.exe to C:\Program
Files\ScreenLock\GDD_XNA_Screen_Saver.exe

16) Make desktop shortcut to ScreenSaver and label it Lock Computer
17) Run SteadyState, disable all of its restrictions (6 set, will be one when done)
18) Set SteadyState to do updates at 3:00 AM
19) Set SteadyState to use DIGMMSIUpdater.vbs as an alternative updater script
20) From Administrator Command Prompt, run netplwiz

a. Uncheck “Users must enter a username/password to use this computer”
b. Select ITAdmin/GDDAdmin as the default account
c. Enter the password if prompted

21) [DONE] Start  Control Panel  System
a. Select System Protection from left panel
b. Select System Protection tab
c. Uncheck C: drive

22) [DONE] Open Computer and select Organize  Folder and Search Options
a. Select View Tab
b. Uncheck “Hide Extensions for known types”

23) [DONE] Right click on start button, select Properties
a. Select Start Menu tab
b. Next to the Start Menu radio button, click Customize…
c. Uncheck “Highlight newly installed programs”
d. Check “Printers”
e. Check “Run Command”
f. Look at pulldowns and make sure they make sense

24) Control Panel  Security Center
a. Click on “Change the way Security Center Alerts Me”
b. Select “Don’t notify me but display the icon”

Sample System Preparation Guide for Pre-Image Master Workstation (continued)

25) Change GPEDIT.MSC Settings
a. Computer Configuration

i. Administrative Templates  System  Power Management
1. Enable “Select An Active Power Plan”
2. Select “High Performance”

ii. Administrative Templates  Windows Components  Autoplay Policies
1. Enable “Turn off Autoplay”
2. Select “CD ROM and Removable”

iii. Administrative Templates  System  Power Management  Button Settings
1. Enable “Select the Power Button Action (Plugged In)”
2. Select “Take No Action”
3. Enable “Select the Start Menu Power Button Action (Plugged In)”
4. Select “Shut Down”

iv. Administrative Templates  System  Power Management  Sleep Settings
1. Disable “Require a Password when a computer wakes (Plugged In)”

v. Administrative Templates  System  Power Management Video and Display Settings
1. Enable “Turn off the display (Plugged In)”
2. Set time for 1800 seconds (30 minutes)

vi. Windows Settings  Scripts (Startup/Shutdown)
1. Select Startup
2. Path “C:\Delivered\Sined\delusername.bat”

b. User Configuration
i. Administrative Templates  System  CTRL-ALT-DEL options

1. Enable “Remove Change Password”
2. Enable “Remove Lock Computer”
3. Enable “Remove Log Off”

ii. Administrative Templates  System  Scripts
1. Enable “Run login Scripts visible”

iii. Administrative Templates  Desktop  Desktop
1. Enable “Desktop Wallpaper”
2. Path C:\Windows\gdddesktop.bmp

iv. Administrative Templates  Control Panel  Display
1. Disable “Screen Saver”

v. Windows Settings  Scripts (Logon/Logoff)
1. Select Logon
2. Path “C:\Delivered\Sined\dispatch.bat”
3. Select Logoff
4. Path “C:\Delivered\Sined\reboot.bat”

26) CD into C:\Delivered\Sined

27) armmach.bat

	Implementation Strategies for Microsoft XNA Game Development in Academic Laboratory Environments
	A Whitepaper describing the rationale, deployment, and operation of the Game Design & Development Laboratory at the Rochester Institute of Technology
	References

