

LingoLand: Simple 3D Terrain Simulation in Lingo.

Andrew M Phelps

Information Technology Dept.
College of Computing and Information Sciences

Rochester Institute of Technology
Rochester, NY, 14623
http://andysgi.rit.edu/

Abstract

This article describes the implementation of a
simple terrain generation system in Lingo. This
material was used to teach the basics of lists and
objects at the Rochester Institute of Technology
to a graduate class of students pursuing a
Multimedia Programming track. As such, while
it implements a fully featured 3D Engine, the
engine is not optimized to its fullest extent, and
the data structures used are the most logical, not
necessarily the fastest. Optimization techniques
will be discussed at the end of this document,
and references given to faster simulation
environments written in Lingo.
In sprite of this focus, the engine does perform
soundly, offering implementation of traditional
computer graphics approaches to rotation,
translation, and scale as well as basic lighting.
Additionally it offers a trails based solution to
overcome the limitation of the upper limit of a
thousand sprites in Macromedia’s Director.
Finally, this engine could very easily be
combined with the file saving system presented
by this author on another project [Phelps,
February 2001] and was also used as a
simulation environment for experimentation with
Artificial Life and Genetic Algorithms within the
Director framework [Phelps & Kunkle
forthcoming]

1 3D ENGINE IMPLEMENTATION

1.1 TUTORIAL FILE SETUP
Terrain simulation has been a long standing issue in the
computer graphics community, with applications ranging
from simple game worlds to advanced applications that
simulate terrain based off of large data sets like satellite
mapping data. This project seeks to implement absolutely
none of that complexity, instead it is concerned with
rendering a very simple randomly generated terrain,

controlled by a few simple variables that are set by the
user, primarily for students writing their first simulation
environment.
The first thing to do is download the files associated with
this document and open the Director movie. Play it.
Click the ‘Make Land’ button until you get one you like
the lay of. Experiment with moving the light around.
Click the ‘subdivide surface’ button, and watch as it
divides the surface to display at a finer resolution. You
should see something like the screen depicted in Figure 1,
although your actual results will depend on light
placement and the original terrain, which is random.

Figure 1: Terrain with 4 subdivisions.

Next, you can achieve very different effects by creating
the random land point generation at a subdivision level
other than ‘1’. To accomplish this restart the movie if
necessary, click the ‘subdivide’ button, and then click
‘Make Land’. Note that the engine will create the new
land at this higher level of detail, producing a more
turbulent surface. Finally, experiment with the global
variables that control the simulation to get a feel for how
the engine works and its capabilities. These variables
control the way that the engine performs, and the type of

land that is produced. A table listing these values is
provided for reference in Table 1.

Table 1: Engine Control Variables

VARIABLE DESCRIPTION

max_row

max_column

The size of the original land matrix.
This is the number of ‘points’ in X and
Z that you see the original land created
with when the movie starts.

square_size Size in pixels of the original tiles, the
space between the points defined
above.

min_height

max_height

The minimum and maximum heights
allowable for random generation of
land elevation. Values closer together
will produce rolling hills, disparate
values produce mountainous regions.

sea_level

rock_level

snow_level

Values relative to min and max height
that dictate when to change the base
color of the ground (below sea level is
rendered blue, etc).

sub_var Original level of surface subdivision,
almost always set to 1.

gSun The primary light object, see section
2.2 for details.

gCamera The viewpoint for the scene, see
section 1.1 and 1.2 for details.

gZoom Original zoom level used by the
projection matrix relative to the
camera.

gAmbient Base level of ambient light. 0 will
leave terrain to be lit only by the sun,
1.0 will result in solid white tiles
(maximum saturation).

1.2 THE VECTOR OBJECT
Now that we have seen the engine in action, how does it
work? The setup for this entire simulation is based on
two object, a VBLF and properties of that object of type
vector. We will dissect the vector object first. This
object holds the x, y, and z coordinates of a point in three-
dimensional space, and also contains the methods
necessary to transform that point using standard math
familiar to those with a computer graphics background.
Therefore, these methods will not be discussed as they are
based on the standard mathematical formalisms inherent
to the filed [Foley et al, 1987, 1996].
The vector object stores its coordinates in the properties
pX, pY, and pZ as floating point values. Integer values
could be used for optimization purposes, with little to no
visual effect, the engine is left un-optimized to show its
capability for floating point precision.

The only other responsibility of a vector object is to
provide the methods inherent to vectors as mathematical
constructs, namely dot product, vector addition,
subtraction, scale, normalization etc. [Hall 1999]. These
methods are described in Table 2. While the basis of this
3D engine is being glossed over here, more detail is
provided in the complete engine description [Kurtz &
Phelps, forthcoming 2001].

Table 2: Vector Object Methods

METHOD DESCRIPTION

new Create a vector.

print Print the X,Y,Z coordinates.

initialize Reset vector to new coordinates.

cross Take the cross product of two vectors.

unitize Unitize the vector.

scale Uniformly scale the vector by some
value.

copyOf Create a copy of the vector.

addvec Add a vector to the vector this handler
was called from.

rotate Rotate the vector around an axis.

vector _offset Reposition the vector relative to
another vector.

average Reposition the vector based on the
average of two other vectors.

normalize Normalize the vector

invert Multiplies a vector by negative one.

abs_dist Returns the absolute distance between
two vectors.

abs_sum Returns the sum of the absolute values
for all three coordinates.

1.3 THE VECTOR BASED LIFE FORM
The second object of primary importance to this engine is
the Vector Based Life Form (VBLF), so termed by
professor Steve Kurtz at the Rochester Institute of
Technology [Kurtz & Phelps, forthcoming]. Essentially a
VBLF combines a group of three vectors with a series of
methods that enable them manipulate the x,y,z (the fourth
vector) of the VBLF. This enables the object to roll,
pitch, yaw, and move relative to its current position, using
the notion that these points carry their own local
coordinate systems with them relative to their center. This
is based in part on the original 2D Turtle Engine [Kurtz,
forthcoming] which is in turn based on the Turtle
Graphics work by M..I.T. in the late 1960’s, which began
with Seymour Papert and continued throughout their

LOGO based projects, and is now seen in the StarLogo
project from the Epistemology group [MIT, 2001].
The VBLF also contains a method that allows the point to
be projected onto the 2D stage, by using a reference to the
gCamera object, which is in turn a slightly modified
VBLF. This method sets the h and v properties of the
object which represent the x and y on the stage, or, in the
case that the VBLF is used to control a single sprite, the
sprites locH and locV. The rest of the methods
available to a VBLF are summarized in Table 3.

Table 3: VBLF Object Methods

METHOD DESCRIPTION

new Create a VBLF.

print Print the location vector of a VBLF

RollLeft Roll counter-clockwise along the
pForward vector, X-Axis upon
creation.

RollRight Roll clockwise along the pForward
vector, X-Axis upon creation.

PitchUp Roll counter-clockwise along the pLeft
vector, Z-Axis upon creation.

PitchDown Roll clockwise along the pLeft vector,
Z-Axis upon creation.

YawLeft Roll counter-clockwise along the pUp
vector, Y-Axis upon creation.

YawRight Roll clockwise along the pUp vector,
Y-Axis upon creation.

Move Move a VBLF along its forward vector
a unit equal to its speed property.

MoveTo Reposition a VBLF to an absolute
coordinate value.

Project Reset the h and v properties of a VBLF
so that it draws on the 2D stage
correctly.

1.4 CREATING SURFACES
Now that you have at least a rudimentary understanding
of the engine involved underneath the hood, the true work
of this application begins, namely the creation of the land.
This begins with the call to createArray() and
GeneratePoints() in StartMovie. These
handlers create a 2 dimensional list, each element of
which contains a VBLF. These VBLF’s are spaced apart
by the tile_size global variable, and there are the
number or rows and columns in the array as specified by
max_row and max_column (see Table 1 for more
detail).
Then the final call is to RenderGround() which is the
primary method used in the application. This is the

primary rendering loop of the application, and it should be
noted that it is not built for performance at this time (see
the Optimization discussion in section 4). This method
makes calls to RenderHeight() which sets the base
color of the tile based on elevation, RenderLight()
which performs the lighting calculations which are
described in the following section, and then sets the four
points adjacent in the array to the corners of a quad,
drawing the sprite to the stage (see figure 2).

Figure 2: Array lookups to produce quad surface, order of points
past to sprite.quad is clockwise from top left.

It does this by passing in the VBLF’s h and v properties to
a sprite’s quad() function, and setting that sprite’s color
to the calculated RGB property. This is generally the
easiest way to store the data for first time engine
developers, although not the best way to store the data for
efficient rendering.

1.5 SUBDIVIDING SURFACES
After all of this setup work and the initial plot to the
screen, the application sits and waits for input from the
user. Most of the other controls, such as moving the light,
the camera, etc, simple alter the property of the light or
camera object as defined in Table 1 and the re-call the
RenderGround() method. Subdividing the surface,
however requires a little more work: namely the insertion
of new data points within the PointArray.
This insertion is relatively simple to visualize given the
following example of what we mean by subdivision of the
surface. Essentially every quad is split into 4 new quads.
This involves first placing a new data point between every
existing data point in each row of the array, averaging the
height of the points to the left and right to produce the
new height value. Next, a new row is inserted between
every row in the array, taking getting its height values
from the average or the points before and after the new
points vertically in the column. Through this algorithm
(see commented code for details) the original 4 points are
now a tighter mesh of 9 points, producing 4 quads from 1.
To produce some slight variation in the land, these
averages are modified by a diminishing random value to
produce more realistic results.
Subdividing the surface also produced a decidedly
problematic issue when it was first implemented, in that
after relatively few subdivision level (2 or 3), the engine

Array
[1][1]

Array
[1][2]

Array
[2][1]

Array
[2][2]

would quickly exceed the available number of sprites,
which is currently has a hard ceiling of one thousand. To
get around this issue, the engine uses one row of sprites
with trails turned on, effectively using the sprite as a
“brush” to “stamp out” the quads and then reuse the stamp
to draw the next one. You could conceivable draw the
entire scene with one sprite, the demo packaged with this
paper reuses rows only, not single sprites, so it is possible
to eventually run out of sprites, when you reach a 1000 x
1000 array or greater. Since this will most likely run so
slowly as to be ridiculous this is not seen as a drawback of
the demo.

2 LIGHTING

2.1 BASIC LIGHTING THEORY
Computer lighting models have been around for years,
and nearly all of them start with the same first steps: ours
is no exception. First, the engine calculates a normal to
the surface, and then compares this normal to a vector
from the same surface to the light source (see figure 3).

Figure 3: Simplistic Lighting Theory based on surface normals.

The engine then computes the color based on the distance
of the surface away from the light, and the angle between
the two vectors described above, and most engines add in
the ability to add some small percentage of color based on
an ambient light value [Foley et al 1987, 1996]. Thus, the
basic mathematical implementation of a lighting system
(for a single light source) is relatively simple.

2.2 LIGHTING THE LAND
There are, however, some rather particular features of our
Lingo engine that make the lighting calculations slightly
more complicated, namely the fact that we are using
quads instead of triangular surfaces. This is unfortunate
in that while a triangular face can produce a single correct
normal to the surface, a quad can make no such guarantee,
because there is no mathematical certainty [Edgerton,
Hall, 1999] that all four points lie along the same plane,
indeed in our engine we almost would desire that they do
not if we are attempting to get mountain tops that end in
sharp peaks.

This engine takes the following solution: it divides the
quad into two triangles, calculates the normal for each
triangle, and uses the average of those vectors as the
normal for the lighting calculation. This is certainly not
an optimal solution the engine was attempting a smooth
shaded look which involved lighting calculation within
the quad, however since each quad is one and only one
color, this has the visual effect of being believable, if not
perfect. A more robust engine could in essence use quads
to simulate triangles, thus wasting a data point, or any
number of other solutions, including the notion of
calculating the light color at the points and blending
inward towards the center of the face.
In any event, we now have the angle of incidence between
the surface normal and the vector that points to the light
source, in our case the gSun object. Using this angle, we
compute the color of the tile, modifying the base color we
receive from elevation based on the ambient light present,
and the properties of the light describing its color,
intensity, and decay (see commented code for more detail
on the exact calculation). The basic formula for these
calculations is described in Foley’s definitive work on the
subject [Foley et al, 1987, 1996]. The lighting can be
used to produce a variety of effects, based on placement
and color (see Figure 4).

Figure 4: Land at Sunset (gSun at low Y large negative Z) at 5
subdivision.

3 FUTURE OPTIMIZATION

3.1 DATA STRUCTURES AND OBJECT
METHODS

This engine is not designed for speed. More to the point,
it is not structured for speed. There are a variety of
reasons for this, not the least of which is legibility for
students experimenting with systems like this for thie first
time. One of the primary bottlenecks in this application is
the calling structure for the VBLF.project() method.
This is caused by the delay in Director’s interpretation of

Vecotr to
light
source.

Surface
normal

Angle Φ

calling methods of objects, which is greatly exaggerated
by the fact that this call is placed in a double repeat loop.
The following syntax inside the repeat loop would offer a
significant speed increase (see figure 5).
-- current technique
-- QuadPoint1.project()

-- new technique
-- call (#project, QuadPoint1)

-- optimal technique (no repeat loop)
-- call (#project, list_of_objects)

Figure 5: Enhanced method-calling structure using alternate
Lingo syntax.

While this is a large speed increase, the optimal method to
use the call #handler syntax for multiple objects is not to
use the call function directly but instead to pass to the call
function a list of object. This can offer very significant
performance savings, however, it involves a complete
reorganization of the data structures that we use to house
the VBLF’s, since it requires a flat list as an argument.
Likewise, referencing properties from outside of an object
is slower than referencing the same property internal to
the object, much of the code could be reorganized to fit
more directly within the objects and thus cut down on the
number of external references. This could have
significant impact with the lighting routines and the way
the render functions are separated (and whether or not
they should be).

4 CONCLUSIONS
In this article we have used a simple 3D engine to create a
simple random surface, used lighting algorithms to
modify the color of that surface, and used that surface to
simulate a simple terrain. This engine, or any similar
scale application is capable of much more, this
application serves as a basis for understanding the
concepts of terrain simulation, without the complexity
overhead of a more traditional language or terrain-
generating algorithm. This work is not highly optimized;
it should instead serve as a clear, precise example for
others to follow and extend to a more fully featured
engine. This application is in turn only one possible
extension of the engine created by this author, another
more robust version of which is also planned for
publication.

5 FUTURE WORK
My students have already extended this project to include
a variety of functions: namely saving and loading terrain
files, using a bitmap as an elevation map to create the
terrain (using Imaging Lingo’s getPixel() call), and
massaging the engine to perform up to 6 times as fast.
Additionally, some of them allowed the creation of

‘terrain worlds’ on cubes, rectangles, spheres, etc., and at
least two of them managed to implement a simple texture
mapping system across multiple quads. Most all of them
created control panels external to the original window to
avoid the clipping problems present in this demo.
One area in which this application could be extended
would be in multi-user functionality. Currently there is no
support in the engine for this capability, but it is high on
the list of desired functionality that most people seem to
want out of graphics engines. If the user has the ability to
control light placement, tile size, etc, then this present a
technical issue in synching the two. Additional support
for displaying real time graphics (which would most
likely break the ‘trails’ solution) is inherent to the engine,
however as discussed significant portions of the code
would need to be reworked.

Acknowledgments
I would like to acknowledge my colleagues at the
Rochester Institute of Technology, and in particular
Professor Steve Kurtz, who shares my interest and
passion for writing graphics programs and extending
Lingo into this arena. I would like to publicly
acknowledge all the support that this author has received
on the DirGames-L mailing list, and thank the University
of Georgia for hosting the list. Many thanks to Barry
Swan, NoiseCrime, and others who have inspired us all to
push Director to its limits: code long, code late, code
happy.

References
P.A. Edgerton and W. S. Hall. Computer Graphics:
Mathematical First Steps. (1999). Prentice Hall
Europe:Essex, England.
James D. Foley, Andries van Dam, Steven K. Feiner, John
F. Hughes. (1987, 1996 2nd revised printing).Computer
Graphics Principles and Practice – 2nd Edition in C. The
Systems Programming Series. Washington, DC: Spartan
Books.
MIT Epistomology Group, Media Lab, Massechusets
Institute of Technology. Introduction to StarLogo.
(2001) Online: http://el.www.media.mit.edu/groups/el/
Projects/starlogo/index.html.
Steven Kurtz. Turtle World. Forthcoming. Featured
Article in Using Director – Director Online. Online:
http://www.director-online.com/
Steven Kurtz and Andrew M Phelps. Vector Based Life
Forms, a 3D Engine Based on Turtles. Forthcoming.
Featured Article in Using Director – Director Online.
Online: http://www.director-online.com/
Andrew M. Phelps, Daniel R. Kunkle. Teaching Old
Turtles New Tricks: Artificial Life Simulations in Lingo.
Forthcoming. Featured Article in Using Director –
Director Online. Online: http://www.director-online.com/

Andrew M. Phelps. Perspective Based Lingo Mazes: The
Director Dungeon Crawl. February 2001. Featured
Article in Using Director – Director Online. Online:
http://www.director-online.com/

Annotated Bibliography
[AA] Anti-Aliasing; [E] Everything; [L] Lingo based 3D
Code; [M] Mathematics;
1. Cole, David. (2000) Dave’s 3D Engine v. 7.

Online. http://www.dubbus.com/devnull/3D. [M][L]
2. Edgerton, P.A & W.S. Hall. (1999) Computer

Graphics: Mathematical First Steps Essex, England:
Prentice Hall. [M]

3. Lithium. (1999-2001) Three Dimensional Rotations.
Online. http://www.gamedev.net/ [M]

4. McNally, Seumas. (1999-2001) 3D Matrix Math
Demystified. Online. http://www.gamedev.net/ [M]

5. Perez, Adrian, Dan Royer. Advanced 3-D Game
Programming Using Direct X 7.0. Plano, Texas:
Wordware Publishing. [M][R]

6. Rodgers, David F. And J.Alan Adams. (1976, 1990)
Mathematical Elements for Computer Graphics 2nd
Ed. New York, New York: McGraw Hill. [M]

7. Rodgers, David F. (1985) Procedural Elements for
Computer Graphics. New York, New York: McGraw
Hill. [M]

8. Swan, Barry. (2000) T3D Engine. Online.
http://www.theburrow.co.uk/t3dtesters/. [L]

9. Tamahori, Che. (1999) How to Cook 3D in Director.
Online. http://www.sfx.co.nz/tamahori/thought/shock
_3d_howto.html. [L][M]

10. Watt, Alan and Fabio Policarpo. (2001) 3D Games:
Real Time Rendering and Software Technology.
New York, New York: Addison-Wesley ACM Press.
[M][R]

11. Zavatone, Alex. Inside Zavs Brain: 3D Director.
Online. www.director-online.com/accessArticle.cfm
?id=286. [L]

	3D ENGINE IMPLEMENTATION
	TUTORIAL FILE SETUP
	THE VECTOR OBJECT
	THE VECTOR BASED LIFE FORM
	CREATING SURFACES
	SUBDIVIDING SURFACES

	LIGHTING
	BASIC LIGHTING THEORY
	LIGHTING THE LAND

	FUTURE OPTIMIZATION
	DATA STRUCTURES AND OBJECT METHODS

	CONCLUSIONS
	FUTURE WORK
	
	References

