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Abstract 
 

This article describes the implementation of a 
simple terrain generation system in Lingo.  This 
material was used to teach the basics of lists and 
objects at the Rochester Institute of Technology 
to a graduate class of students pursuing a 
Multimedia Programming track.  As such, while 
it implements a fully featured 3D Engine, the 
engine is not optimized to its fullest extent, and 
the data structures used are the most logical, not 
necessarily the fastest.  Optimization techniques 
will be discussed at the end of this document, 
and references given to faster simulation 
environments written in Lingo.  
In sprite of this focus, the engine does perform 
soundly, offering implementation of traditional 
computer graphics approaches to rotation, 
translation, and scale as well as basic lighting. 
Additionally it offers a trails based solution to 
overcome the limitation of the upper limit of a 
thousand sprites in Macromedia’s Director.  
Finally, this engine could very easily be 
combined with the file saving system presented 
by this author on another project [Phelps, 
February 2001] and was also used as a 
simulation environment for experimentation with 
Artificial Life and Genetic Algorithms within the 
Director framework [Phelps & Kunkle 
forthcoming] 

1 3D ENGINE IMPLEMENTATION 

1.1 TUTORIAL FILE SETUP 
Terrain simulation has been a long standing issue in the 
computer graphics community, with applications ranging 
from simple game worlds to advanced applications that 
simulate terrain based off of large data sets like satellite 
mapping data.  This project seeks to implement absolutely 
none of that complexity, instead it is concerned with 
rendering a very simple randomly generated terrain, 

controlled by a few simple variables that are set by the 
user, primarily for students writing their first simulation 
environment.     
The first thing to do is download the files associated with 
this document and open the Director movie.  Play it.  
Click the ‘Make Land’ button until you get one you like 
the lay of.  Experiment with moving the light around.  
Click the ‘subdivide surface’ button, and watch as it 
divides the surface to display at a finer resolution.  You 
should see something like the screen depicted in Figure 1, 
although your actual results will depend on light 
placement and the original terrain, which is random. 

 
Figure 1: Terrain with 4 subdivisions. 

 
Next, you can achieve very different effects by creating 
the random land point generation at a subdivision level 
other than ‘1’.  To accomplish this restart the movie if 
necessary, click the ‘subdivide’ button, and then click 
‘Make Land’.  Note that the engine will create the new 
land at this higher level of detail, producing a more 
turbulent surface.  Finally, experiment with the global 
variables that control the simulation to get a feel for how 
the engine works and its capabilities.  These variables 
control the way that the engine performs, and the type of 



 

 

land that is produced. A table listing these values is 
provided for reference in Table 1. 
 

Table 1: Engine Control Variables 

VARIABLE DESCRIPTION 

max_row 

max_column 

The size of the original land matrix. 
This is the number of ‘points’ in X and 
Z that you see the original land created 
with when the movie starts. 

square_size Size in pixels of the original  tiles, the 
space between the points defined 
above. 

min_height 

max_height 

The minimum and maximum heights 
allowable for random generation of 
land elevation. Values closer together 
will produce rolling hills, disparate 
values produce mountainous regions. 

sea_level 

rock_level 

snow_level 

Values relative to min and max height 
that dictate when to change the base 
color of the ground (below sea level is 
rendered blue, etc). 

sub_var Original level of surface subdivision, 
almost always set to 1. 

gSun The primary light object, see section 
2.2 for details. 

gCamera The viewpoint for the scene, see 
section 1.1 and 1.2 for details. 

gZoom Original zoom level used by the 
projection matrix relative to the 
camera. 

gAmbient Base level of ambient light. 0 will 
leave terrain to be lit only by the sun, 
1.0 will result in solid white tiles 
(maximum saturation). 

 

1.2   THE VECTOR OBJECT 
Now that we have seen the engine in action, how does it 
work?  The setup for this entire simulation is based on 
two object, a VBLF and properties of that object of type 
vector.  We will dissect the vector object first.  This 
object holds the x, y, and z coordinates of a point in three-
dimensional space, and also contains the methods 
necessary to transform that point using standard math 
familiar to those with a computer graphics background.  
Therefore, these methods will not be discussed as they are 
based on the standard mathematical formalisms inherent 
to the filed [Foley et al, 1987, 1996]. 
The vector object stores its coordinates in the properties 
pX, pY, and pZ as floating point values.  Integer values 
could be used for optimization purposes, with little to no 
visual effect, the engine is left un-optimized to show its 
capability for floating point precision. 

The only other responsibility of a vector object is to 
provide the methods inherent to vectors as mathematical 
constructs, namely dot product, vector addition, 
subtraction, scale, normalization etc. [Hall 1999].  These 
methods are described in Table 2.  While the basis of this 
3D engine is being glossed over here, more detail is 
provided in the complete engine description [Kurtz & 
Phelps, forthcoming 2001]. 
 

Table 2: Vector Object Methods 

METHOD DESCRIPTION 

new Create a vector. 

print Print the X,Y,Z coordinates. 

initialize Reset vector to new coordinates. 

cross Take the cross product of two vectors. 

unitize Unitize the vector. 

scale Uniformly scale the vector by some 
value. 

copyOf Create a copy of the vector. 

addvec Add a vector to the vector this handler 
was called from. 

rotate Rotate the vector around an axis. 

vector _offset Reposition the vector relative to 
another vector. 

average Reposition the vector based on the 
average of two other vectors. 

normalize Normalize the vector 

invert Multiplies a vector by negative one. 

abs_dist Returns the absolute distance between 
two vectors. 

abs_sum Returns the sum of the absolute values 
for all three coordinates. 

 

1.3 THE VECTOR BASED LIFE FORM 
The second object of primary importance to this engine is 
the Vector Based Life Form (VBLF), so termed by 
professor Steve Kurtz at the Rochester Institute of 
Technology [Kurtz & Phelps, forthcoming].  Essentially a 
VBLF combines a group of three vectors with a series of 
methods that enable them manipulate the x,y,z (the fourth 
vector) of the VBLF.    This enables the object to roll, 
pitch, yaw, and move relative to its current position, using 
the notion that these points carry their own local 
coordinate systems with them relative to their center. This 
is based in part on the original 2D Turtle Engine [Kurtz, 
forthcoming] which is in turn based on the Turtle 
Graphics work by M..I.T. in the late 1960’s, which began 
with Seymour Papert and continued throughout their 



 

 

LOGO based projects, and is now seen in the StarLogo 
project from the Epistemology group [MIT, 2001]. 
The VBLF also contains a method that allows the point to 
be projected onto the 2D stage, by using a reference to the 
gCamera object, which is in turn a slightly modified 
VBLF.  This method sets the h and v properties of the 
object which represent the x and y on the stage, or, in the 
case that the VBLF is used to control a single sprite, the 
sprites locH and locV.  The rest of the methods 
available to a VBLF are summarized in Table 3. 
 

Table 3: VBLF Object Methods 

METHOD DESCRIPTION 

new Create a VBLF. 

print Print the location vector of a VBLF 

RollLeft Roll counter-clockwise along the 
pForward vector, X-Axis upon 
creation. 

RollRight Roll clockwise along the pForward 
vector, X-Axis upon creation. 

PitchUp Roll counter-clockwise along the pLeft 
vector, Z-Axis upon creation. 

PitchDown Roll clockwise along the pLeft vector, 
Z-Axis upon creation. 

YawLeft Roll counter-clockwise along the pUp 
vector, Y-Axis upon creation. 

YawRight Roll clockwise along the pUp vector, 
Y-Axis upon creation. 

Move Move a VBLF along its forward vector 
a unit equal to its speed property. 

MoveTo Reposition a VBLF to an absolute 
coordinate value. 

Project Reset the h and v properties of a VBLF 
so that it draws on the 2D stage 
correctly. 

 

1.4 CREATING SURFACES 
Now that you have at least a rudimentary understanding 
of the engine involved underneath the hood, the true work 
of this application begins, namely the creation of the land.  
This begins with the call to createArray() and 
GeneratePoints() in StartMovie.  These 
handlers create a 2 dimensional list, each element of 
which contains a VBLF.  These VBLF’s are spaced apart 
by the tile_size global variable, and there are the 
number or rows and columns in the array as specified by 
max_row and max_column (see Table 1 for more 
detail). 
Then the final call is to RenderGround() which is the 
primary method used in the application.  This is the 

primary rendering loop of the application, and it should be 
noted that it is not built for performance at this time (see 
the Optimization discussion in section 4).  This method 
makes calls to RenderHeight() which sets the base 
color of the tile based on elevation,  RenderLight() 
which performs the lighting calculations which are 
described in the following section, and then sets the four 
points adjacent in the array to the corners of a quad, 
drawing the sprite to the stage (see figure 2). 

Figure 2: Array lookups to produce quad surface, order of points 
past to sprite.quad is clockwise from top left. 

 
It does this by passing in the VBLF’s h and v properties to 
a sprite’s quad() function, and setting that sprite’s color 
to the calculated RGB property.  This is generally the 
easiest way to store the data for first time engine 
developers, although not the best way to store the data for 
efficient rendering. 

1.5 SUBDIVIDING SURFACES 
After all of this setup work and the initial plot to the 
screen, the application sits and waits for input from the 
user.  Most of the other controls, such as moving the light, 
the camera, etc, simple alter the property of the light or 
camera object as defined in Table 1 and the re-call the 
RenderGround() method.  Subdividing the surface, 
however requires a little more work: namely the insertion 
of new data points within the PointArray.   
This insertion is relatively simple to visualize given the 
following example of what we mean by subdivision of the 
surface.  Essentially every quad is split into 4 new quads.  
This involves first placing a new data point between every 
existing data point in each row of the array, averaging the 
height of the points to the left and right to produce the 
new height value. Next, a new row is inserted between 
every row in the array, taking getting its height values 
from the average or the points before and after the new 
points vertically in the column.  Through this algorithm 
(see commented code for details) the original 4 points are 
now a tighter mesh of 9 points, producing 4 quads from 1.  
To produce some slight variation in the land, these 
averages are modified by a diminishing random value to 
produce more realistic results. 
Subdividing the surface also produced a decidedly 
problematic issue when it was first implemented, in that 
after relatively few subdivision level (2 or 3), the engine 
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would quickly exceed the available number of sprites, 
which is currently has a hard ceiling of one thousand.  To 
get around this issue, the engine uses one row of sprites 
with trails turned on, effectively using the sprite as a 
“brush” to “stamp out” the quads and then reuse the stamp 
to draw the next one.  You could conceivable draw the 
entire scene with one sprite, the demo packaged with this 
paper reuses rows only, not single sprites, so it is possible 
to eventually run out of sprites, when you reach a 1000 x 
1000 array or greater.  Since this will most likely run so 
slowly as to be ridiculous this is not seen as a drawback of 
the demo.  

2 LIGHTING 

2.1 BASIC LIGHTING THEORY 
Computer lighting models have been around for years, 
and nearly all of them start with the same first steps: ours 
is no exception.  First, the engine calculates a normal to 
the surface, and then compares this normal to a vector 
from the same surface to the light source (see figure 3). 

Figure 3: Simplistic Lighting Theory based on surface normals. 

 

The engine then computes the color based on the distance 
of the surface away from the light, and the angle between 
the two vectors described above, and most engines add in 
the ability to add some small percentage of color based on 
an ambient light value [Foley et al 1987, 1996].  Thus, the 
basic mathematical implementation of a lighting system 
(for a single light source) is relatively simple. 

2.2 LIGHTING THE LAND 
There are, however, some rather particular features of our 
Lingo engine that make the lighting calculations slightly 
more complicated, namely the fact that we are using 
quads instead of triangular surfaces.  This is unfortunate 
in that while a triangular face can produce a single correct 
normal to the surface, a quad can make no such guarantee, 
because there is no mathematical certainty [Edgerton, 
Hall, 1999] that all four points lie along the same plane, 
indeed in our engine we almost would desire that they do 
not if we are attempting to get mountain tops that end in 
sharp peaks. 

This engine takes the following solution: it divides the 
quad into two triangles, calculates the normal for each 
triangle, and uses the average of those vectors as the 
normal for the lighting calculation.  This is certainly not 
an optimal solution the engine was attempting a smooth 
shaded look which involved lighting calculation within 
the quad, however since each quad is one and only one 
color, this has the visual effect of being believable, if not 
perfect.  A more robust engine could in essence use quads 
to simulate triangles, thus wasting a data point, or any 
number of other solutions, including the notion of 
calculating the light color at the points and blending 
inward towards the center of the face. 
In any event, we now have the angle of incidence between 
the surface normal and the vector that points to the light 
source, in our case the gSun object.  Using this angle, we 
compute the color of the tile, modifying the base color we 
receive from elevation based on the ambient light present, 
and the properties of the light describing its color, 
intensity, and decay (see commented code for more detail 
on the exact calculation).  The basic formula for these 
calculations is described in Foley’s definitive work on the 
subject [Foley et al, 1987, 1996].  The lighting can be 
used to produce a variety of effects, based on placement 
and color (see Figure 4). 

 
Figure 4: Land at Sunset (gSun at low Y large negative Z) at 5 
subdivision. 

 

3 FUTURE OPTIMIZATION 

3.1 DATA STRUCTURES AND OBJECT 
METHODS 

This engine is not designed for speed.  More to the point, 
it is not structured for speed.  There are a variety of 
reasons for this, not the least of which is legibility for 
students experimenting with systems like this for thie first 
time.  One of the primary bottlenecks in this application is 
the calling structure for the VBLF.project() method.  
This is caused by the delay in Director’s interpretation of 
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calling methods of objects, which is greatly exaggerated 
by the fact that this call is placed in a double repeat loop.  
The following syntax inside the repeat loop would offer a 
significant speed increase (see figure 5). 
-- current technique  
-- QuadPoint1.project() 
 
-- new technique 
-- call (#project, QuadPoint1) 
 
-- optimal technique (no repeat loop) 
-- call (#project, list_of_objects) 
 
Figure 5: Enhanced method-calling structure using alternate 
Lingo syntax. 
 
While this is a large speed increase, the optimal method to 
use the call #handler syntax for multiple objects is not to 
use the call function directly but instead to pass to the call 
function a list of object.  This can offer very significant 
performance savings, however, it involves a complete 
reorganization of the data structures that we use to house 
the VBLF’s, since it requires a flat list as an argument.  
Likewise, referencing properties from outside of an object 
is slower than referencing the same property internal to 
the object, much of the code could be reorganized to fit 
more directly within the objects and thus cut down on the 
number of external references.  This could have 
significant impact with the lighting routines and the way 
the render functions are separated (and whether or not 
they should be). 

4 CONCLUSIONS 
In this article we have used a simple 3D engine to create a 
simple random surface, used lighting algorithms to 
modify the color of that surface, and used that surface to 
simulate a simple terrain.  This engine, or any similar 
scale application is capable of much more, this 
application serves as a basis for understanding the 
concepts of terrain simulation, without the complexity 
overhead of a more traditional language or terrain-
generating algorithm.  This work is not highly optimized; 
it should instead serve as a clear, precise example for 
others to follow and extend to a more fully featured 
engine.  This application is in turn only one possible 
extension of the engine created by this author, another 
more robust version of which is also planned for 
publication. 

5 FUTURE WORK 
My students have already extended this project to include 
a variety of functions: namely saving and loading terrain 
files, using a bitmap as an elevation map to create the 
terrain (using Imaging Lingo’s getPixel() call), and 
massaging the engine to perform up to 6 times as fast. 
Additionally, some of them allowed the creation of 

‘terrain worlds’ on cubes, rectangles, spheres, etc., and at 
least two of them managed to implement a simple texture 
mapping system across multiple quads.  Most all of them 
created control panels external to the original window to 
avoid the clipping problems present in this demo. 
One area in which this application could be extended 
would be in multi-user functionality. Currently there is no 
support in the engine for this capability, but it is high on 
the list of desired functionality that most people seem to 
want out of graphics engines. If the user has the ability to 
control light placement, tile size, etc, then this present a 
technical issue in synching the two.  Additional support 
for displaying real time graphics (which would most 
likely break the ‘trails’ solution) is inherent to the engine, 
however as discussed significant portions of the code 
would need to be reworked. 
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