
Visual Debugging Tools for

Shockwave 3D
Recently, I have been working in Shockwave3D

in Lingo and JavaScript syntax. Regardless of

what I am writing, I keep running into issues

that can be summed up by the following

phrase: I don’t know exactly what I’m doing.

More precisely, I don’t know exactly what I am

doing when I am doing it. I’m figuring it out.

And that’s what programming interactive

things is all about: finding a way to do what you need

to do, such that the user has the experience you want

them to have. Unfortunately it is sometimes difficult to

tell exactly what your code is doing, and this is

particularly true in 3D environments.

R

by andy phelps

32 • MXDJ.COM 12 • 2004

Visual Debugging Tools for

Shockwave 3D
Recently, I have been working in Shockwave3D

in Lingo and JavaScript syntax. Regardless of

what I am writing, I keep running into issues

that can be summed up by the following

phrase: I don’t know exactly what I’m doing.

More precisely, I don’t know exactly what I am

doing when I am doing it. I’m figuring it out.

And that’s what programming interactive

things is all about: finding a way to do what you need

to do, such that the user has the experience you want

them to have. Unfortunately it is sometimes difficult to

tell exactly what your code is doing, and this is

particularly true in 3D environments.

R

by andy phelps

12 • 2004 MXDJ.COM • 33

 So with these issues in the back of my

head, I was working on my lightmap gen-

eration tool, and I was really getting stuck.

A “lightmapper” is a tool that pre-gener-

ates, through raytracing or other means, a

series of maps that represent the lighting

in a 3D scene as textures on the individual

objects. This is a very popular technique in

game-level design, as Brian Robbins noted

at MAX, and as several authors have noted

in the game development community.

Figure 1 shows a few sample renders from

my tool in progress.

 The problem I was having was in

projecting the shadows, and in particular

figuring out the angle to each light from

the points along the surface. I was never

really “sure” of exactly where the ray was

I was checking against. This is relatively

easy to figure out for a single light, but I

was getting very confused when calculat-

ing multiple light sources (see Figure 2).

In order to figure out just what was going

on, I used a strategy that I have used in

the past” build a visual “prop,” or “stand-

in” of the ray itself. The only problem is

that Shockwave3D has no #line primitive.

No problem! Just make a very long, skin-

ny triangle. Listing 1 shows a Lingo han-

dler that creates a “connector” object: it

has a triangle that it uses as a “line,” which

it can snap between a beginning and end

point. Additionally, it can color each end

of the “line” a different color, and blends

the two together along the triangle face.

 Using these lines, I was able to trace

out each and every light path in the scene,

and get a sense of whether or not it was

doing what I wanted it to do (see Figure

3). This was very handy, but this tool isn’t

limited to that specific use. I’ve used it

in the past to represent surface normals

(something I wish S3D had a #debug flag

for), direction vectors, a “point at” vector

between two objects, and even rotational

axes when I haven’t been able to see the

ones drawn through the #debug flag.

(For some reason, the axes generated by

Director are all black when drawn with the

DirectX7_0 renderer on my nVidia cards).

Because each end of the “line” can be col-

ored separately, they can be used to repre-

sent directional vectors, rather than just a

straight connection between two points.

 In order to get the “lines” to show up well

in a debug environment, I generally create a

custom shader that ramps up the emissive

and ambient qualities (and sets some flags

so that the vertex colors actually have an

effect). For the script in Listing 1, I used the

shader props set in Listing 2. I’ve also used

“lines” in a similar way in JavaScript syntax,

a very similar script to the Lingo ThreeDLine

implementation is presented in Listing 3.

 Being able to “see” what is actually

going on has proved invaluable for this

and several other projects. Using color and

shape makes it much easier to tell what

the code is doing than an iterative ‘run

and see’ approach. By thinking of debug-

ging visually, tools can be constructed that

make it easier to see just what is going on.

If you have either already built tools, or

are thinking of writing some after seeing

these simple examples, I encourage you

to share them with the community as you

are able, to build up a library of visual aids

that help us in our daily work.

fi
g

u
re

 1

34 • MXDJ.COM 12 • 2004

fi
g

u
re

 2
fi

g
u

re
 3

12 • 2004 MXDJ.COM • 35

listin
g

 2

li
st

in
g

 1

-- ThreeDLine

--

property p_vPosA -- position A of line

property p_vPosB -- position B of line

property p_mshMesh --line mesh

property p_mModel --line model

--

-- ThreeDLine::New()

-- a_sName - string name of the line to be created

-- a_aColor - array of 2 rgb colors [start, end]

-- a_vPoint1 - vector start of line

-- a_vPoint2 - vector end of line

-- a_shShader - shader to be applied to the line

on new me, a_sName, a_aColor, a_vPoint1, a_vPoint2,

a_shShader

 me.p_vPosA = a_vPoint1

 me.p_vPosB = a_vPoint2

 --create a mesh for this connector

 if (voidP(_global.D3D_WORLD[#g_3DWorld].model(a_

sName))) then

 else

 return 0

 end if

 me.p_mshMesh = _global.D3D_WORLD[#g_3DWorld].newMesh(

\

 a_

sName,1,3,3,3,0)

 --set color list

 me.p_mshMesh.colorList = [a_aColor[1], \

 a_aColor[2], \

 a_aColor[1]]

 --set vertex list

 me.p_mshMesh.vertexList = [vector(0,0,0), \

 vector(0,100,0), \

 vector(100,100,0)]

 --set normal list

 --NOTE: this is a hack, normals here make ok

 --lines, but are not technically correct for 3D

 --lighting...

 me.p_mshMesh.normalList = [vector(1,1,1), \

 vector(1,1,1), \

 vector(1,1,1)]

 --set the vertices and colors into the mesh

 --NOTE: Need to use getPropRef to parse the lingo

arrays

 --that are embedded in the S3D Xtra

 me.p_mshMesh.face[1].vertices = [1,2,3]

 me.p_mshMesh.face[1].colors = list(1,2,3)

 --build the triangle

 me.p_mshMesh.build()

 --create a model from our triangle

 me.p_mModel = _global.D3D_WORLD[#g_3DWorld].newModel(

\

 a_sName, me.p_

mshMesh)

 --set render ops for best debug lines

 me.p_mModel.visibility = #both

 --set shader on this model

 me.p_mModel.shader = a_shShader

 me.mUpdate()

 return me

end ThreeDLine

-- ThreeDLine::mUpdate()

-- a_vPointA - vector new start position

-- a_vPointB - vector new end position

on mUpdate me, a_vPointA, a_vPointB

 -- make the connector position itself between the A

and B

 -- parent nodes. This is a little but tricky.

 me.p_vPosA = a_vPointA

 me.p_vPosB = a_vPointB

 vPosC = vector(me.p_vPosA.x, \

 me.p_vPosA.y - 2.000, \

 me.p_vPosA.z - 2.000)

 me.p_mshMesh.vertexList = [me.p_vPosA, me.p_vPosB,

vPosC]

end mUpdate

Listing 2

-------------[set shader properties for]----------

-------------[debug lines: glow and wire]----------

lineShader.shininess = 0

lineShader.blend = 10

lineShader.transparent = true

lineShader.blendFunction = #blend

lineShader.blendConstant = 30

lineShader.texture = void

lineShader.specular = color(0,0,0)

lineShader.diffuse = color(0,0,0)

lineShader.ambient = color(0,0,0)

lineShader.emissive = color(255,255,255)

lineShader.renderStyle = #wire

Andrew Phelps is

an assistant profes-

sor in the B. Thomas

Golisano College

of Computing and

Information Sciences at

the Rochester Institute

of Technology. He has

an academic back-

round in information

technology, as well as

traditional fine arts and

computer animation.

His work using Director

has been featured at

the Director-Online

User’s Group (DOUG)

as well as the DevNet

Center at Macromedia.

Andy regularly teaches

coursework in multi-

media programming,

game programming, and

simulation/visualization.

amp@it.rit.edu

36 • MXDJ.COM 12 • 2004

li
st

in
g

 3

lineShader.flat = false

lineShader.useDiffuseWithTexture = false

-------------[end shader properties]---------------

Listing 3

/*---

// Connector::Connector a line that connects 2 nodes,

A & B

// a_oNodeA node objectA

// a_oNodeB node objectB

--------*/

function Connector(a_oNodeA, a_oNodeB) {

 //set props

 this.p_oNodeA = a_oNodeA;

 this.p_oNodeB = a_oNodeB;

 this.p_bIsTerminator = a_bIsTerminator;

 this.p_sName = "CONNECTOR:_" + a_oNodeA.mGetName() +

 "_" + a_oNodeB.mGetName();

 //create a mesh for this connector

 this.p_mshMesh = _global.gD3D_WORLD.newMesh(this.

p_sName,

 1,3,3,3,0);

 //set color list

 this.p_mshMesh.colorList = list(this.p_oNodeA.mGet-

Color(),

 this.p_oNodeB.

mGetColor(),

 this.p_oNodeA.

mGetColor());

 //set vertex list

 this.p_mshMesh.vertexList = list(vector(0,0,0),

 vector(0,100,0),

 vec-

tor(100,100,0));

 //set normal list

 //NOTE: this is a hack, normals here make ok

 //lines, but are not technically correct for 3D

 //lighting...

 this.p_mshMesh.normalList = list(vector(0,1,0),

 vector(0,1,0),

 vector(0,1,0));

 //set the vertices and colors into the mesh

 //NOTE: Need to use getPropRef to parse the lingo

arrays

 //that are embedded in the S3D Xtra

 this.p_oFace = this.p_mshMesh.getPropRef("face", 1)

 this.p_oFace.vertices = list(1,2,3);

 this.p_oFace.getPropRef("face", 1).colors =

list(1,2,3);

 //build the triangle

 //this.p_mshMesh.generateNormals(symbol("flat"));

 this.p_mshMesh.build();

 //create a model from our triangle

 this.p_mModel = _global.gD3D_WORLD.newModel(this.

p_sName,

 this.p_mshMesh);

 //set visibility of the triangle to two-sided

 this.p_mModel.visibility = symbol("both");

 //assign custom shader, reset properties as needed

 this.p_mModel.shader = _global.gD3D_WORLD.

getProp("shader",2);

 this.p_mModel.shader.shininess = 0;

 this.p_mModel.shader.blend = 10;

 this.p_mModel.shader.emissive = color(50,50,50);

 //call initial update to position the connecting tri-

angle

 this.mUpdate();

}

/*---

//Connector::mGetName

//get the name of this connector as a string

-------*/

Connector.prototype.mGetName = function() {

 return this.p_sName

}

/*---

//Connector::mUpdate

//position line between nodes A & B, call after moving

//either A, B, or both.

-------*/

Connector.prototype.mUpdate = function() {

 //make the connector position itself between the A

and B

 //parent nodes. This is a little but tricky.

 var vPosA = this.p_oNodeA.mGetPosition();

 var vPosB = this.p_oNodeB.mGetPosition();

 var vPosC = vector(vPosA.x,

 vPosA.y - 2.000,

 vPosA.z - 2.000);

 this.p_mshMesh.vertexList = list(vPosA, vPosB,

vPosC);

}

12 • 2004 MXDJ.COM • 37

