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Abstract 
 

There are several instances in arcade 
games and similar entertainment titles 
where it is desirable to simulate the 
expansion of an explosion or similar event 
(plasma ring, dust cloud, etc).  While some 
modern engines can devote processor 
cycles to calculating the real-time expansion 
of a simple cloud, more often than not in 
web and downloadable games the 
resources are not available.  We describe a 
reasonable approximation of expansion that 
seems to stand up to the ‘visibility test’, 
meaning that users find such effects to be 
believable within the game world, and richer 
than a single animated sequence.  These 
techniques are in no way physically accurate 
to the expansion of a cloud due to explosive 
force, nor are they based on any physical 
model whatsoever.   
Instead, we propose the use of classical tree 
algorithms, and describe both Lindenmayer-
Systems [1] and random fractal trees as 
competing methodologies.  Using these 
trees as layout mechanisms has been 
largely successful in producing visually 
acceptable results within our own engines, 
and the techniques should be adaptable to a 
range of other games and applications.  We 
provide an example of a random fractal tree 
explosion and the accompanying code-base.  
L-System explosions are discussed but are 
not presented as a demonstration due to the 
wealth of existing materials on their creation.  
Finally, several basic special effects are 
explored, as well as adaptation from two-
dimensional test environments to 
Shockwave 3D. 
 

A random-tree explosion generates from a single animated 
sequence, composted in real-time with tree-layout, alpha-
blending, and wind shear effect. 

1 THE SINGLE EXPLOSION SPRITE 

1.1 A LOOK AT NON-TREED APPROACHES 
A number of non-treed approaches exist for the 
simulation of explosions-like events, meaning the 
expansion of gas and debris over time.  The most 
simplistic of these is a single sprite animation.  Using 
this approach, a number of tiles are pre-rendered 
that depict the event, and then played back, one 
after another to produce the animation.  This is in 
fact at the core of any of the more advanced 
techniques: the ability to animate over time.  That 
the sprite technique does so using pre-rendered 
frames is its defining characteristic, and in fact we 
use the sprite technique as the basis for our trees. 
There are also several non-sprite-based techniques 
worth mentioning.  There was a great deal of work 
done with regard to the modeling of expanding 
gases by David Ebert [2], which proposes the use of 
noise functions and real-time compositing to 



produce effects in a three-dimensional graphics 
system.  Also noteworthy were the color algorithms 
for expanding mist proposed and illustrated by F. 
Kenton Musgrave [3].  Regardless of claims of real-
time performance, however, we have found such 
solutions to be too computationally intensive for 
interpretive frameworks such as Shockwave, and 
have had only minimal success in adapting these 
techniques. 
Another interesting technique is the real-time 
deformation of spheres using the per-vertex and per-
pixel pipelines found in modern graphics hardware.  
This is demonstrated in part in the planet-creation 
routines of Jesse Laeuchli [4][5], although it is 
obvious how these routines could be useful in 
simulating explosion and similar effects using similar 
geometry, essentially deforming a sphere in real-
time through pre- and post-render effects based on 
noisy textures. 
The technique with perhaps the most current known 
implementations is the use of a formal particle 
system for simulation and rendering.  These systems 
are built into most rendering software 
(Alias|Wavefront’s Maya®, Kinetix 3dsMax®, etc).  
They are also available in real-time on modern 
graphics hardware, provided that they are not 
overused.  There have been several examples 
recently of how to simulate explosion-style effects 
using particle-systems. [6][7]  But these simulations 
rely on direct access to the GPU though shader 
languages (generally either Cg from Nvidia or the 
DirectX 9.0 HLSL).  Given that neither of these is 
directly available, and that the available particle 
systems objects are a significant performance drain 
on Shockwave 3D environments, this technique was 
not fully explored.  It should be theoretically possible 
to implement the particle routines in software and 
use sprite-based techniques for rendering. 
A final approach is to use textured quads or spheres 
with full-motion video of actual explosions.  This 
technique attempts to simulate none of the random, 
chaotic nature of an explosion and instead relies on 
successfully compositing a real explosion into the 
scene.  The advantages of this technique are 
obvious: it has the capability to look the best of any 
possible simulation because it is, in fact, the real 
thing.  There are, however, a number of issues 
related to correctly scaling and placing the video in 
the scene, masking and clipping the explosion from 
the rest of the footage, and performance problems 
that arise from the size of video footage even in 
compressed form.  It was not deemed appropriate, 
in a real-time game, to attempt this using the current 
crop of video tools, although such an attempt may 
be useful, either as a direct composite or as a 
texture extraction exercise. 
 

1.2 DUPLICATING ANIMATION SEQUENCES 
In the creation of what we believe to be convincing 
animation system, we first looked at generating the 
explosion graphics algorithmically, but this proved to 
be a significantly arduous task within the confines of 
Director.  Instead, we turned to Kinetix 3D Studio 
Max® and pre-rendered a series of slides as high-
quality PNG images with alpha channel.  This is not 
as elegant as generating them via the code base, as 
they have to be shipped with the game rather than 
generated post-download, but the visual appeal was 
much greater than any attempt at a lingo-based 
render (and significantly faster).  As such, the demo 
movie contains an “EXPLOSIONS” cast in which our 
pre-rendered slides are stored as cast members (it 
should be noted that the size of these cast members 
is quite large, which will be addressed in section 
3.X). 
Once all of the image tiles have been created, it is 
necessary to display them in sequence to produce 
animation.  This is done using imaging lingo 
techniques, in the “Base Animator” script.  This script 
is essentially a re-creation of the sprite functionality 
of the classic Director engine, only using imaging 
techniques instead of traditional sprite based ones.  
It operates under the following rules: 

1. Each member of the EXPLOSIONS cast has 
its image duplicated and places in an array 
(EXPLOSTION_WORLD[#g_aExpImages] 

2. Each separate explosion created receives a 
new instance of the “Base Animator” script.  
This object contains an mUpdate method. 

3. Each frame, the mUpdate method of all 
available Base Animators is called.  This is 
akin to a “stepframe” for objects placed on 
the ActorLIst 

4. The mUpdate method draws the current 
image in the array (starting with the first) 
onto a buffer image the size and shape of 
the stage by calling the objects mDraw 
method.  Following the draw, the current 
image counter is increased, such that the 
next frame drawn will correspond to the next 
image in the array. 

5. The mDraw method uses standard 
copyPIxel commands to copy the image 
from the g_aExpImages array onto the 
buffer (see the commented “straight blit” 
code for details) 

NOTE: All explosions, be they the first or last, draw 
from the same set of images in the array: this is 
essentially a glorified version of the way sprites 
instance cast members without needing to duplicate 
the media itself.  Thus while the initial set of images 
is rather large, they exist in one selected memory 
space and do not change position or size, and can 



thus be thought of as at least partially optimized in 
the sense that no direct calculation needs to occur 
on a per-frame basis other than the copy into the 
stage buffer.  Also note that our initial tests used the 
image of the stage itself instead of a buffer, and 
while this consumed less memory, it was 
significantly slower than rendering to an off-screen 
image and performing a single copy onto the stage. 

1.3 ROTATION FOR ADDITIONAL VARIETY 
Even with the ability to add several explosion 
sequences from the same image set, the system 
exhibited too much similarity, given that the clouds in 
one sequence would exactly match the expansion of 
the second.  To combat this, a system was 
developed that allows for the rotation of the “sprite” 
around its own origin.  Since there is no actual sprite 
object, this system implements its own rotation, 
using methodology similar to that presented in the 
author’s collision system [8] using the formula for 
rotation in two dimensions presented in Figure 1. 
 
 
 
 
Figure 1: Equation describing rotation of a two-dimensional point 
around the origin in Cartesian space where [x’ y’] describes the 
position of [x y]. 

 

The points of the non-rotated bounding rect of the 
image are rotated around a given angle, and the 
resulting points are used to form a quad that is fed to 
the copyPixels command in place of the target 
rectangle.  For performance reasons, the sin() and 
cos() of each angle is pre-generated and placed in a 
lookup table for easy retrieval, as this yield 
significant speed increases when compared to 
computing the values every frame.  A further 
optimization that could be implemented would be to 
not rotate the quad at all if the target “sprite” did not 
rotate that frame.  The code for the sin/cos lookup 
table generation is presented in Figure 2.  The code 
for the actual computation of the rotated image quad 
is contained in the “BASE_ANIMATOR” and 
“ROTATION_HELPERS” scripts (see the 
“mRotateQuad” handler for specifics). 
 
--generate sin / cos lookup tables. 
  D3D_WORLD[#g_aSin] = [] 
  D3D_WORLD[#g_aCos] = [] 
  repeat with iCounter = 1 to 360 
    D3D_WORLD[#g_aSin][iCounter] = \ 
        sin(iCounter * \  
        D3D_WORLD[#g_fDegrad]) 
    D3D_WORLD[#g_aCos][iCounter] = \ 
        cos(iCounter * \   

        D3D_WORLD[#g_fDegrad]) 
end repeat 
 

Figure 2:  Lingo handler for pre-generation of sin / cos lookup 
tables where integer angles serve as keys to the individual 
values. 

2 LAYOUT & EXPANSION 
ALGORITHIMS 

2.1 L-SYSTEMS AS A LAYOUT TOOL 
The first methology used for the layout of the 
individual explosions is an Lindenmyer system.  
Such systems are commonly used for rendering 
plants, grasses, and bushes [9], but can also be 
thought of as a way to generate point lists in time.  
The authors do not present the underlying structure 
of their L-System implementation as it does not differ 
significantly from the basic technique described by 
Lindenmyer and implemented in [2], and there are 
several good documentable sources describing 
other Shockwave3D implementations that our as 
advanced if not superior to the ones we present 
here.  The L-Systems in this case are not the focus 
of the application, but rather a way to generate a set 
of points that are stored in subsequent arrays, and 
serve as the basis for explosion sequences at those 
locations.  This idea is presented in Figure 3. 
 

 
 
 
 
 
 
Figure 3:  Generation of event levels via an L-System 
Methodology.  Explosions are generated at level 1 first, then 
2,3,etc. at specific intervals. 
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Explosion Event Level 5 – Array 5



Using these “Event Levels” an animation controller is 
constructed that places a large animation at Level 1 
using the “base animator” presented earlier.  After 
some number of frames have elapsed, smaller 
explosions are started at Level 2, at a slightly 
smaller scale, and possibly at a difference per-frame 
rate.  After yet more time has expired, explosion 
sequences are started at the positions stored in 
Level 3, etc, etc.  This process is repeated to the 
desired depth.  When no noise is introduced into the 
system with regards to variability in scale, position, 
or play-rate a semi-ordered explosion ensues, as 
can be seen in Figure 4.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Top-down L-System explosion tree over 64 frames 
captured every 8 frames.  Screenshot taken from the Broadsword 
Engine, alpha 0.82. Copyright A. Cloutier and A. Phelps 2003-
2004. 
 
The explosion above stores the positions of an L-
System similar to that presented in Figure 3, but with 
greater radial symmetry.  The explosion is seen from 
the top down, with entities towards the root-node 

rescaled to a larger size, where scale is diminished 
per-level, and rotation of the explosion in 2D space 
is random, but always bill-boarded to the camera.  A 
time-lapse view of the explosion that demonstrates 
this symmetry is presented in Fig. 5. 

. 
Figure 5:  Time-Lapse view of top-down L-System explosion tree 
over 60 frames.  Screenshot taken from the Broadsword Engine, 
alpha 0.82. Copyright A. Cloutier and A. Phelps 2003-2004. 

2.2 RANDOM TREES 
The explosions presented previously are desirable if 
and when a more “ordered” explosion is needed.  To 
get a more chaotic feel, a second approach was 
used, based on a more random, less-governed tree.  
This is not to say that L-System are incapable of 
producing less ordered results: techniques such as 
random pruning, selective offspring, and pseudo-
random noise tables can produce significantly 
altered visuals from the base tree.  In the interest of 
time and performance however, a second approach 
was implemented that simply computes a number of 
children from the parent at completely random 
angles.  This is significantly easier to calculate, and 
can be visually appealing if somewhat controlled.  
This technique is the basis for the FRACTAL script 
in the demo file, and a render of non-explosive 
spheres, color coded by age, can be seen in Figure 
6.  This technique is based in part on Keith Peters’ 
work in fractal generation, but without any of the 
advanced rulesets applied [10] 
The FRACTAL script begins by creating an 
explosion at the base position, and then waits until 
the next pass to create the children to that parent.  
Recursively, it then creates the children to those 
parents, and continues to iterate to its maximum 
depth, pausing and waiting N frames between 
creations such that the explosions appear to 
cascade out from the center.  Each time an 
explosions is created, a new “Base Animator” is  
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Figure 6: A rendering of the same fractal system that is used in 
explosion generation, with all nodes rendered as spheres.  Color 
and size represent age in the system, with large / light red [center] 
being the root node and the smallest purple nodes being the last.  
Connection between nodes are child-parent and represented with 
grey lines. 

 
created, and stored in the EXPLOSION_MGR.  This 
manager keeps track of all of the currently playing 
explosions, and updates each of them per-frame on 
its own mUpdate method.  Thus, once an individual 
“base animator” is created at a certain position, it is 
totally independent of the fractal – it will animate, 
rotate, and drift on its own without interaction with 
the other nodes in the fractal.  A final explosion 
sequence using this technique is presented in Fig 7. 
 

3 EFFECTS AND 3D 

3.1 WIND AND OTHER SPECIAL EFFECTS 
Several effects are added to the base explosion 
system, the most noticeable is the “wind” effect.  The 
effect is actually dead simple, and involves a hack to 
the “base animator”.  Every frame, as the animator 
calculates the quad into which it draws the image for 
the frame, the quad is offset by a number of pixels in 
the x and y direction.  This can be done linearly for a 
flat “slide” of the explosion, or exponentially such 
that the wind has no effect at first, and has a greater 
and greater effect based on the number of frames 
the animator has already calculated.  The formula 
used in the wind example provided is p = p + 
(f1/ft)*c, where p represents the position of the quad-
point, f1 represents the current frame of the 
animation, ft represents the total number of frames 
in the animation, and c is a constant value that 
represents the wind strength.  (2D coordinate 
positions pX and pY are computed individually).  
This could be modified such that either c or (f1/ft) is 

raised to an exponential power to further slant the 
curve of the winds effect if needed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Explosion sequence based on a fractalized, random tree 
structure and animated explosion tiles. 

 
A second small touch that was added is an ever 
increasing rotational force such that explosions that 
do not appear to rotate when they begin do 



approach noticeable rotation as they fade into 
smoke and debris.  There is a small amount of 
randomization in the rotational speed to avoid visual 
repetition.  

3.2 ANIMATING IN PERFORMANCE CRITICAL 
ENVIRONMENTS 

It is worth noting that in performance critical 
environments there are two major factors that can 
effectively speed up the system. The first is the size 
of the pre-rendered explosion images, and smaller 
images increase performance because there is less 
information to copy per frame.  In general, explosion 
tiles can be rendered 1/3rd to 1/4th of the size that 
they will be seen on screen and the results will still 
be visually appealing.  Rendering the tiles too small 
relative to size on screen results in over-pixelation 
and visual degradation. 
The second available optimization occurs in trees 
that advance far enough such that there are a large 
number of children towards the end of the tree.  In 
such systems, it is generally unnecessary to draw all 
of the children towards the end of the tree, as they 
cannot be visually distinguished from their peers at 
this level.  Thus, either linearly or exponentially 
culling the number of children per node or simply 
capping the growth algorithm at an upper bound can 
allow explosions to continue visually without 
degrading performance due to the number of child 
objects.  A balance between the cap and the visual 
results of the system should be obtainable.  See the 
comments at the bottom of the mUpdate method in 
the “FRACTAL” script for further details. 
 

3.3 ADAPTATION TO SHOCKWAVE 3D AND 
TEXTURED QUADS OR SPHERES 

The final implementation of this system operates in a 
Shockwave3D, and derives several benefits from the 
3D environment.  First and foremost, instead of 
creating an array of images, an array of textures is 
created through standard S3D methodologies.  
These textures are then mapped onto models that 
are single meshes of 2 adjoining triangles that 
create a square “tile”.  These tiles can be rotated 
freely without any of the sin/cos operations above by 
applying matrix operations to the model through the 
model.rotate(vector(0,Ф,0),#self) where 
Ф is the desired angle of rotation.  This is a 
significant performance advantage.  All of the tiles 
remain oriented towards the camera, and a “camera 
render-group” approach can be used to ensure that 
explosions always render on top of other elements 
[11]. 
The second major advantage is the complete lack of 
copyPixel operations.  The explosions animate by 
swapping textures onto the model one after another, 

there is no need to copy the image into screen or 
pixel-space.  This is further optimized by the fact that 
the textures can be very small compared to the 
rendered textures used in the demo, because of the 
mip-maps created by the graphics card when the 
images are used to create textures.  In the prototype 
of the engine, the sample explosions in Figures 4 
and 5 were created using pre-rendered explosions 
that were 16x16 pixels.  This is significantly smaller 
than the 128x96 pixel tiles used in the imaging lingo 
demo program, but the results are as good if not 
more appealing, due primarily to the mip-mapping 
and texture blurring features found in modern 
graphics hardware. 

4 CONCLUSIONS 
There are several methodologies available to create 
more believable explosions and gas-like and 
particle-like effects in game engines.  While several 
of these rely on advanced techniques using modern 
graphics hardware, some tried-and true techniques 
like billboarding sprites and animations are still very 
effective.  Using L-Systems and random trees can 
help create believable placement of expanding gas-
clouds without the complicated mathematics of 
exactly modeling the physics of rapidly expanding 
gas and debris.  This is particularly suited to arcade 
style games, in which explosion based effects are 
often needed, but the processor time that can be 
devoted to them is minimal. 
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